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A comparative Spectral Mixture Analysis (SMA) of Landsat 7 Enhanced

Thematic Mapper (ETM+) imagery for a collection of 28 urban areas worldwide

provides a physical basis for a spectral characterization of urban reflectance

properties. These urban areas have similar mixing space topologies and can be

represented by three-component linear mixture models in both scene-specific and

global composite mixing spaces. The results of the analysis indicate that the

reflectance of these cities can be accurately described as linear combinations of

High Albedo, Dark and Vegetation spectral endmembers within a two-

dimensional mixing space containing over 90% of the variance in the observed

reflectance. Only two of the 28 cities had greater than 10% median RMS misfit to

the three-endmember linear model. The relative proportions of these end-

members vary considerably among different cities and within individual cities but

in all cases the reflectance of the urban core lies near the dark end of a mixing line

between the High Albedo and Dark endmembers. The most consistent spectral

characteristic of the urban mosaic is spectral heterogeneity at scales of 10–20 m.

In spite of their heterogeneity, built-up areas do occupy distinct regions of the

spectral mixing space. This localization in mixing space allows spectrally mixed

pixels in built-up areas to be discriminated from undeveloped land cover types.

This provides a basis for mapping the spatial extent of human settlements using

broadband optical satellite imagery collected over the past 30 years.

1. Introduction

Since the launch of Landsat 1 in 1972, the world’s urban population has almost

doubled (United Nations 2002). Although urban areas occupy a relatively small

fraction of Earth’s surface area, their extent, distribution and evolution have

enormous impact on environmental and socio-economic dynamics worldwide (e.g.

Berry 1990, Chameides et al. 1994). A variety of urban growth models have been

developed (e.g. Nordbeck 1971, Batty and Longley 1994, Zanette and Manrubia

1997, Makse et al. 1998) but the spatially explicit data necessary to test and refine

these models are relatively sparse. When available, multitemporal maps of urban

extent are generally based on municipal administrative boundaries that rarely reflect

the variations in land use related to the causes and effects of urban growth. A

systematic quantitative measure of the spatial extent and growth of urban areas

would facilitate the development and testing of urban growth models by providing

comparisons of urban morphology and growth dynamics in different physical,

cultural and socio-economic settings.

Moderate resolution (10–100 m) optical sensors provide an underutilized 30-year

record of global urban evolution at spatial scales sufficient to distinguish built-up
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urban areas from other land cover types. This satellite imagery is routinely used to

provide visual depictions of urban areas but comparative quantitative analyses of

urban land cover are relatively rare. Mapping urban land cover is important because

it reflects land-use patterns related to socio-economic activities that impact the

surrounding environments (e.g. Forster 1983, Jensen and Cowen 1999). Despite its

fundamental importance, urban land cover has not been characterized to the same

extent that other land cover types have. In order to quantify the extent and

evolution of urban areas with optical sensors it is necessary to understand the

physical characteristics that distinguish urban areas from other types of human

modified and undeveloped land surfaces. These physical characteristics determine

the nature of the radiance field measured by sensors and therefore determine what

can and cannot be measured remotely. Comparative analyses are especially

important because of the diverse physical, cultural and socio-economic factors that

determine the physical form of urban areas. A systematic physical characterization

of optical reflectance properties of urban areas could therefore facilitate a self-

consistent global mapping of urban extent. Cities are clearly delineated in moderate

resolution imagery but their recognition depends, in part, on a complex combination

of visual cues related to differences in colour and texture as well as the recognition of

anthropogenic features like street grids. The question this study seeks to address is

whether or not urban areas have distinctive spectral properties that distinguish them

from other land cover types.

One of the primary obstacles to urban land cover classification is the diversity and

spectral heterogeneity of urban reflectance. Compared to other land cover types,

urban reflectance is extremely variable at a variety of spatial scales. Spectral

heterogeneity at scales comparable to the Ground Instantaneous Field Of View

(GIFOV) of an optical sensor results in a preponderance of spectrally mixed pixels.

Mixed pixels are problematic for statistical classification methods because most

algorithms are predicated on the assumption of spectral homogeneity within a

particular class of land cover. The classification task is often further complicated by

physical inconsistencies between the thematic classes sought and the reflectance

properties that can be discriminated with moderate resolution broadband sensors.

Urban areas provide examples of spectrally diverse, scale-dependent thematic

classes containing large numbers of pixels that are spectrally indistinguishable from

other land cover classes. The diversity of land cover types and scales in the urban

mosaic therefore results in high rates of misclassification between urban and other

land cover classes. Combining spectral, textural and ancillary information

can improve classification accuracy (e.g. Stefanov et al. 2001) but a physical

characterization of reflectance is still necessary to accommodate the physical

processes that influence the upwelling radiance measured by optical sensors. Several

recent studies have used physical rather than statistical classifications of urban land

cover in individual cities with some degree of success (e.g. Kressler and Steinnocher

1996, 2000, Small 2001a, Rashed et al. 2002). This analysis attempts to generalize

the approaches of these previous studies in a single analysis of a wide variety of

urban areas.

The objective of this study is to develop a robust, quantitative physical

characterization of the reflectance properties of urban mosaics. This task is

complicated by two distinct types of variability in urban reflectance. Intraurban

spectral variability is a result of the diversity of building materials and land covers

present in the urban mosaic at different spatial scales. Interurban variability in
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reflectance is a result of socio-economic, cultural, historical and environmental

differences among cities. Factors such as building materials, physical environment,

urban planning constraints and historical evolution influence differences in overall

reflectance patterns observed between cities worldwide. This study uses the concepts

of Spectral Mixture Analysis (SMA) to provide self-consistent physical descriptions

of a variety of cities in order to determine what, if any, reflectance characteristics

can be used to distinguish urban land cover in moderate resolution optical imagery.

2. Reflectance scale and spectral mixing

The characteristic spatial scale of surface reflectance patterns in the built

environment is comparable to the GIFOV of most operational multispectral

sensors in use today. Two-dimensional spatial autocorrelation of 1 m Ikonos

imagery in 14 cities of varying size and setting indicates that the characteristic spatial

scale on which visible/near-infrared reflectance decorrelates is 10–20 m (Small 2003).

This explains the preponderance of mixed pixels observed in 30 m Landsat imagery

of urban areas. This spectral mixing within the urban mosaic is also what often

prevents hard classification algorithms from producing accurate results. The

spectral heterogeneity at pixel scale violates the cardinal assumption of most

statistical classification algorithms (e.g. maximum likelihood) wherein each thematic

class is assumed to be both spatially and spectrally homogeneous relative to the

spectral differences among classes. In order to characterize urban reflectance in a

physically meaningful and sufficiently robust way, it is necessary to accommodate

the fact that moderate resolution sensors will generally image a combination of

discrete surface reflectances and represent the upwelling radiance field in the form of

a mixed pixel.

Spectral Mixture Analysis (SMA) provides a systematic way to quantify spectrally

heterogeneous urban reflectance. SMA is based on the observation that, in many

situations, radiances from surfaces with different ‘endmember’ reflectances mix

linearly in proportion to area within the instantaneous field of view (IFOV) (Nash

and Conel 1974, Singer and McCord 1979, Singer 1981, Johnson et al. 1983). This

observation has made possible the development of a systematic methodology for

SMA (Adams et al. 1986, 1989, Smith et al. 1990, Gillespie et al. 1990) that has

proven successful for a variety of quantitative applications with multispectral

imagery (e.g. Pech et al. 1986, Smith et al. 1990, Adams et al. 1995, Roberts et al.

1998, Elmore et al. 2000). If a limited number of distinct spectral endmembers are

known a priori it is possible to define a ‘mixing space’ within which mixed pixels can

be described as linear mixtures of the endmembers. Given sufficient spectral

resolution, a system of linear mixing equations can be defined and the best fitting

combination of endmember fractions can be estimated for the observed reflectance

spectra (Boardman 1989, Johnson et al. 1985, Smith et al. 1985). The strength of the

SMA approach lies in the fact that it explicitly takes into account the physical

processes responsible for the observed radiances and therefore accommodates the

existence of mixed pixels. This discussion provides only a brief summary of urban

SMA. A more detailed discussion of the theory, analysis and validation for urban

areas is given by Small (2001a) and the works cited above.

This study is based on a diverse collection of cities spanning a range of

environmental, cultural and socio-economic settings. The analyses are conducted on

a set of 28 Enhanced Thematic Mapper (ETM+) images acquired by Landsat 7

between 1999 and 2001. This quasi-random selection was gleaned from the Landsat
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7 archive at the University of Maryland’s Global Land Cover Facility. The cities were

chosen on the basis of area, diversity and image quality. All analyses were conducted on

exoatmospheric reflectance estimates. No atmospheric corrections have been applied.

For each city, a 30 km630 km image was chosen to represent the urban area and as

wide a variety of surrounding land covers as possible (figure 1). In most cases, the

900 km2 image contained all of the built-up area and varying amounts of surrounding

land covers. In only two cases (New York and Sao Paulo) was the built-up area too

large to be contained in the subscene. In these cases, the scene was chosen to cover the

city centre as well as some land cover representative of the surrounding areas.

3. Urban mixing spaces

This analysis characterizes urban reflectance in the context of the regional mixing

space that includes both the built-up urban area and the variety of regional land

cover types within and surrounding the city. Continuous fractions can represent

different mixtures of land cover corresponding to different types of urban land use

as well as the urban-rural gradient in land cover. The true dimensionality of the

mixing space is determined by the number of spectrally distinct endmembers present

in the urban mosaic. The apparent dimensionality of the mixing space is determined

by the number of spectral endmembers that can actually be distinguished by the

sensor. The apparent dimensionality is therefore constrained by the number of

spectral bands available as well as the wavelengths spanned by the bands. The

limited spatial and spectral resolution of the ETM+ sensor results in a projection of

a true high dimensional mixing space onto a lower dimensional representation

constrained by the ability of the sensor to discriminate different surface reflectances

at GIFOV scales. Analyses of AVIRIS hyperspectral imagery suggest that some

urban areas have as many as 30–50 spectral dimensions (Green and Boardman 2000,

Small 2001b) but the TM and ETM+ sensors can resolve only six of these

dimensions at most. A central question of this analysis is whether these six

dimensions provide an adequate basis for a systematic characterization of urban

reflectance. Is the information content provided by the Landsat sensor sufficient to

discriminate between urban areas and other land cover types in a consistent manner?

The fact that an experienced interpreter can recognize urban areas in Landsat

imagery suggests that this is the case but visual interpretation is based on a complex

combination of spectral and textural cues that generally prove extremely difficult to

simulate with machine-based algorithms.

The basis of the SMA is the variance partition and mixing space characterization

provided by a principal component transformation of the multispectral imagery.

The eigenvalue distribution provides a quantitative estimate of the variance

partition between the signal and noise dominated principal components of the

image (figure 2). The multidimensional feature space of the low order principal

components represents the spectral mixing space that can be used to describe the

spectral mixtures as combinations of spectral endmembers. In this analysis, a

Minimum Noise Fraction (MNF) principal component transformation is used. The

MNF transformation implemented in the ENVI image processing software is

analogous to the Maximum Noise Transformation described by Green et al. (1988)

but differs in ordering of the principal components from high to low signal variance

(RSI 2000). With Landsat imagery, the MNF transformation usually produces

principal components similar to those resulting from a traditional covariance-based

PC rotation but offers the added benefit of normalizing the eigenvalues relative to
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Figure 1. Visible/infrared false colour composites of urban Landsat 7 imagery. ETM+ bands
7, 4 and 2 (RGB) emphasize contrast between soil, vegetation, high albedo and dark land
covers at 30 m spatial scales. A 2% linear stretch has been applied to each image so the
variation in the colour of the built-up areas is influenced by the distribution of reflectances in
the surrounding areas. A higher resolution colour version of this figure is available online at
www.LDEO.columbia.edu/,small/Urban.html
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Figure 2. A SMA example for New York City. The density shaded scatter plots show
orthogonal projections of the spectral mixing space formed by the three low order principal
components. The eigenvalues show the variance associated with each dimension (principal
component) of the mixing space. The two primary dimensions in the side view contain 97% of
the total scene variance suggesting that the mixing space can be described with a three-
endmember linear mixing model. The reflectance vectors show the spectra of the three
endmembers (bold) as well as intermediate binary mixture spectra (grey) from points on the
two sharply defined linear edges of the mixing space. Inversion of the three-endmember linear
mixing model for each pixel results in the fraction and misfit images shown below. Each
fraction ranges from 0 (black) to 1 (white) and the misfits range from 0 to 0.1. The fraction
distributions have distinct narrow peaks for the dark water bodies and emphasize the
dominance of the Dark endmember. Spatial variations in vegetation fraction correspond to
differences in abundance of street trees while the parks and wetlands are clearly delineated by
the high vegetation fractions. Areas of exposed soil have higher misfits because the model
contains no soil endmember.
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the variance of the sensor noise estimate. For this analysis, all MNF transforma-

tions were applied using noise covariance statistics derived from a June 2000 ETM+
image of a large, clear lake at 3400 m elevation in the Peruvian highlands.

Normalized eigenvalue distributions quantify the partition of variance among the

principal components indicating how many spectral dimensions are required to

represent the information content in the image. The larger eigenvalues are associated

with the low order principal components representing the dominant reflectance

patterns while the smaller eigenvalues are associated with the higher order principal

components associated with the pixel scale variance commonly assumed to be noise.

This assumption is obviously incorrect in urban areas but it will not detract from the

results as this study focuses on the overall reflectance properties of urban areas

rather than higher order endmembers. Scatter plots showing the two primary

dimensions of the 28 individual images are shown in figure 3.

SMA of a single city can use local endmembers calibrated to specific land cover

types within the image but in order to compare endmember fraction distributions of

different cities it is necessary to estimate fractions relative to a common set of

endmembers. This can be done either by radiometrically rectifying all of the scene-

specific sets of endmembers bounding each individual mixing space (Small 2002) or

by using a single set of endmembers for all inversions. In this analysis a common set

of global endmembers is used to estimate fraction images for each urban area. The

global endmember set is selected from the global mixing space shown in figure 4.

This mixing space represents a combination of 18 of the 28 images used in this study.

The 18 images were chosen to span the range of land cover types encompassed by the 28

images while minimizing redundancy and accommodating hardware limitations. The

topology of the triangular mixing space in figure 4 is consistent with the mixing spaces

of the individual images. The edge between the Vegetation and Low Albedo

endmembers is straight, indicating linear binary mixing. The edge between the High

and Dark endmembers is slightly convex and diffuse, revealing the presence of a fourth

endmember and some nonlinear mixing along the ‘grey axis’ spanning the Dark and

High Albedo endmembers. The tapering of the mixing space approaching the

Vegetation endmember suggests that the vegetation fraction is well constrained by the

linear model.

Spectral mixing spaces provide a self-consistent basis for comparison of urban

reflectance characteristics. The similarity of the triangular mixing spaces shown in

figure 3 indicates that the images in this study have a consistent mixing space

topology. Although the distributions of mixed pixels within the mixing spaces vary

considerably, the overall form is similar. The apexes of the mixing space

corresponding to the spectral endmembers are generally well defined and the edges

between the apexes are generally straight or concave. This suggests that the mixing

among the endmembers is primarily linear. The variance partition given by the

eigenvalue distributions in figure 5 indicates that the two-dimensional mixing spaces

shown in figure 3 contain almost all of the spatially coherent information in the

images. For comparison, the eigenvalues corresponding to the 1 km city centres

show a greater dominance of the primary dimension and relatively greater

contribution of the third dimension relative to the second dimension in the 30 km

images. This reflects the diminishing contribution of the Vegetation endmember in

the city centres as the mixing space is dominated by the grey axis between the High

and Dark endmembers and influenced by the nonlinear mixing into the third

dimension.
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Figure 3. Spectral mixing spaces of the 28 urban areas and their surroundings shown in
figure 1. Each two-dimensional mixing space is represented by a density shaded scatter plot of
the two low order principal components of the corresponding image in figure 1. The pixels
near the apexes of the scatter plot represent spectral endmembers while the darker interior
regions represent a greater number of mixed pixels. The mixing spaces generally have a
triangular form in the two primary dimensions. The pixels at the apexes consistently
correspond to High Albedo, Dark and Vegetation endmembers. The small, dark clusters
(generally at the right-most apex) correspond to water and deep shadow.
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4. Spectral endmembers and linear mixture models

The comparative analysis shows that a wide variety of urban areas have similar

spectral mixing spaces and might be described with a simple three-component linear

mixture model. The consistency in the topology of the mixing spaces is reflected in

the consistency of the spectral endmembers. Figure 6 shows exoatmospheric

reflectance vectors for the three endmembers associated with the apexes of the

primary two-dimensional mixing space. The Dark and Vegetation endmembers are

remarkably consistent in light of the fact that no atmospheric corrections have been

made. The High Albedo endmember is variable in amplitude but is generally convex

upward with a peak at short wave infrared (SWIR) wavelengths.

The Dark endmember generally corresponds to deep shadow or clear water. In

many cases, several different water bodies of differing reflectance can be resolved as

distinct clusters near the low albedo (Dark) apex of the mixing space. In these cases,

Figure 4. Global spectral mixing space and endmember reflectance vectors. Three
orthogonal projections of the three low order dimensions show the familiar triangular
mixing space with linear mixing between the Dark endmember and the Vegetation and High
Albedo endmembers. The third dimension accounts for 3.5% of the variance corresponding
primarily to the ‘grey axis’ between the High and Dark endmembers. The arcuate mode near
the Dark endmember in the top view corresponds to different water body reflectances in the
global composite. Endmember spectra are plotted in bold and binary mixtures from the two
linear edges of the mixing space are shown in grey.
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Figure 5. Variance partition and spatial scale. Normalized eigenvalue distributions show the
partition of variance among the principal components for each 30 km630 km urban area and
for 1 km61 km subscenes from the city centres. Eigenvalues corresponding to the principal
components of the global dataset are shown by circles. The two low order principal
components generally account for more than 90% of scene variance, indicating that the
mixing spaces are primarily two-dimensional. The larger 30 km images generally have a
greater percentage of variance in the first dimension as a result of the albedo contrast between
the built-up areas and surrounding land cover.

Figure 6. Spectral endmember reflectance vectors. Exoatmospheric reflectances correspond
to pixels at the apexes of the mixing spaces shown in figure 3. Heavy solid curves are the
global endmembers from the global mixing space shown in figure 4. Even without radiometric
rectification or atmospheric correction, the Dark (long dash) and Vegetation (short dash)
endmembers are remarkably consistent in shape while variable in amplitude. The High
Albedo (solid) endmembers are quite variable in amplitude but generally show a convex
upward shape with peak reflectance at SWIR wavelengths.
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the Dark endmember was chosen to correspond to clear water or deep shadow

areas. The short wavelength curvature of these Dark reflectances shows the

atmospheric path radiance component that is present in every pixel. The fraction of

Dark endmember is inversely related to the overall albedo of a mixed pixel because it

represents atmospheric scattering in the absence of surface reflectance. The fraction of

High Albedo endmember does not necessarily provide an accurate estimate of the

overall albedo because of the non-linearity and dispersion of most mixing spaces near

the high albedo apex. The high intra- and interurban variability of the High Albedo

endmember suggests that a single endmember could not accurately represent the wide

variety (but low areal abundance) of high albedo reflectances observed. For the same

reason, the similarity of the Dark endmember suggests that it provides a more

consistent inverse metric of overall urban albedo.

Consistency in the topology of spectral mixing spaces is also reflected in the

consistency in variance partition seen in eigenvalue distributions (figure 4). Analysis

of AVIRIS hyperspectral imagery indicates that urban spectral dimensionality can

be scale dependent as larger areas can contain a wider variety of spectral

endmembers (Small 2001b). Because surrounding areas may be more spectrally

diverse than the built-up area, mixture analyses were also conducted for 5 km65 km

and 1 km61 km areas around the city centres. The eigenvalue distributions for these

smaller subsets also indicate that the mixing space is essentially two-dimensional.

Note that the global endmembers do not bound all of the scene-specific local

endmembers but do have a consistent shape. The consequences of this are discussed

below.

Inversion of the three-endmember linear mixture model with the global

endmembers results in reasonably low misfits between observed and modelled

reflectance. The unity-constrained, least squares inversion, described in Small

(2001a), was applied to all 28 images using both scene specific and global

endmembers. Mixed pixel reflectance is forward modelled by summing the fraction

estimate weighted endmembers for comparison to the observed reflectance vector on

which the fraction estimate is based. RMS misfit between the modelled and observed

reflectances provides a quantitative measure of how well the estimated fractions and

endmembers can reproduce the observed reflectance. The distributions of RMS

misfit are normalized by the mean reflectance amplitude for each pixel of each image

(figure 7). The misfits are normalized to better reflect the relative magnitude of the

misfit to the observed reflectance. Un-normalized misfit distributions convey an

overly optimistic impression of small misfit in images with large areas of low

amplitude reflectance. Scaling the misfit by the mean amplitude for each pixel

provides a better indication of the magnitude of the misfit relative to the amplitude

of the corresponding mixed pixel. Nonetheless, all but two of the 28 images have

median misfits less than 10% of the mean reflectance amplitude. The two images

with larger misfits are Taipei and San Salvador. The misfits in the Taipei image

result from a large cloud in the middle of the image. As expected, the complex

reflectance of the cloud is not well fit by the simple three-endmember linear model.

The larger misfits in the Salvador image result from the pervasive presence of an

unmodelled soil endmember. Large areas of fallow agricultural land surrounding

Guangzhou are also not well fit and result in a bimodal misfit distribution with a

small mode near 0.25.

The fraction estimates derived from the global endmembers show a strong linear

correspondence to the estimates derived from the local, scene-specific, endmembers.
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Figure 8 shows scatter plots of fraction estimates for four contrasting cases of strong

and somewhat weaker correspondence between global and local endmember

fractions. The width or dispersion of the scatter plot indicates the degree of

correspondence between the global and local endmember fraction estimates. The

slope of the linear scatter plot shows the amplitude correspondence. Perfect

agreement would yield a narrow diagonal scatter plot along the 1:1 line. Slopes less

than 1:1 indicate a local endmember that does not span the full range of the

corresponding global endmember. In this example, Cairo and Damascus show

strong linear relationships but differing amplitude correspondence. Cairo’s global

fraction of High Albedo endmember saturates at 77% of the local high albedo

fraction while Lagos’ local high albedo fraction saturates at 63% of the global high

albedo fraction and bottoms at 24%. In part, this is a result of Cairo’s clear

atmosphere and large amplitude High Albedo endmember (relative to the global

High Albedo endmember) and Lagos’ turbid atmosphere that reduces the amplitude

(by absorption) of the High Albedo endmember and increases (by scattering) the

amplitude of the Dark endmember. The high minimum values of Lagos’ global

Dark endmember also indicates the high level of atmospheric path radiance relative

to the other cities (except Tianjin). Similarly, both Lagos and Tianjin have severely

attenuated local Vegetation endmembers relative to the other cities. Tianjin has a

strong linear correspondence in the dark and vegetation fractions but a weaker

correspondence in the high albedo fraction. Damascus has considerably more

scatter for all fractions, suggesting a weaker linear correspondence between global

and local endmembers than the other cities. Damascus’ higher local misfit suggests

that the local endmembers do not fit the observations as well as the global

endmembers. Lagos has a multimodal misfit distribution with a subset of pixels that

are well fit by the local endmembers but poorly fit by the global endmembers. The

strong linear relationship between global and local endmember fraction estimates

suggests that this type of misfit analysis could yield scaling factors for mapping

Figure 7. Normalized misfit distributions for the three-endmember linear mixture model.
All but two of the 28 urban areas have a median misfit of less than 10% of the mean amplitude
of the corresponding pixel. The two images with higher misfit (San Salvador and Taipei)
result from large areas of unmodelled soil and cloud (respectively) endmembers.
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calibrated local endmember fractions to globally consistent fraction estimates.

Specifically, the zero intercept of the Dark endmember could provide an indication

of the local path radiance relative to a global endmember from a relatively clear

atmosphere. This type of analysis also provides a way to flag urban images with

severe atmospheric turbidity or poorly constrained endmembers.

Comparison of the average endmember fractions of the 28 urban areas suggests

considerable variability in urban reflectance. Figure 9 shows average endmember

fractions plotted on ternary diagrams for both the 30 km630 km and 5 km65 km

images. Much of the variability in the 30 km630 km images results from the wide

range of land cover types surrounding the urban areas. The 5 km65 km images

more accurately reflect the spectral characteristics of the built-up areas of each city.

Figure 8. Scatter plots of endmember fraction estimates derived from global endmembers
and local, scene-specific endmembers. The dispersion and linearity of each scatter plot
indicates the extent to which the global and local endmembers are linearly related. The slope
of each scatter plot shows the extent to which the local endmembers overestimate (e.g. Cairo –
High Albedo) or underestimate (e.g. Lagos – High Albedo) the global fractions. The positive
intercepts of the Dark scatter plots (Tianjin and Lagos) result from atmospheric path
radiance.
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The average endmember fractions of the 5 km65 km images are distributed along the

grey axis between the High Albedo and Dark endmembers. Vegetation fractions in city

centres are less than 20% on average. Some of this variability is related to differences in

atmospheric conditions but the range of fractions is larger than the atmospherically

induced variability implied by figure 8. Based on these plots, there is no evidence to

suggest the existence of a single characteristic urban reflectance signature for the built

environment. This is not surprising given the diversity of structures and building

materials used in urban areas.

5. Discussion

The preceding analysis suggests that three-endmember linear mixture models are

well posed for the urban areas investigated in this study. Some areas could be

represented more accurately with four-endmember models but, in general, the RMS

misfits to the three-endmember models are small (.0.1 of mean pixel reflectance in

figure 7). Small misfit is a necessary but not sufficient verification of the linear

mixture model. Large misfits would indicate that the model did not provide an

accurate description of the mixed reflectances but small misfit does not guarantee

that the estimates are accurate areal measures of specific land cover types. This

requires field validation with actual endmember fraction measurements. Vegetation

fraction estimates derived from Landsat 5 imagery agree with high spatial resolution

(2 m) measurements of areal vegetation cover to within 10% in New York (Small

2001a) so there is some basis for expecting correspondence in other cities. Additional

field validation will be necessary to determine if this level of accuracy can be

obtained for other endmembers in other urban settings. Nonetheless, the low misfits

do suggest that the three-endmember model can account for most of the observed

variance. As such, it provides a simple, accurate and robust way to characterize

urban reflectance.

Endmember fraction estimates are related to Tasselled Cap Brightness and

Greenness (Kauth and Thomas 1976). Figure 11 shows the strong similarity between

Figure 9. Ternary diagrams showing average endmember fractions for the 28 urban areas
and city centres. Average fractions of the 30 km630 km images are heavily influenced by land
cover surrounding the urban area. Average fractions for the 5 km65 km city centres are more
representative of the built-up area and are displaced toward the Dark endmember along the
grey axis with less than 20% vegetation fraction. The wide range of average fractions indicates
considerable intraurban spectral variability.
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the global mixing space and a scatter plot of the Tasselled Cap Brightness and

Greenness. The first principal component of the global composite has a correlation

of 0.99 with the Brightness image and the second principal component has a

correlation of 0.94 with the Greenness image. In spite of the strong correlation to

endmember fractions, Tasselled Cap components do not provide physical quantities

that can be directly calibrated. Furthermore, greenness and brightness are not truly

independent quantities. As pointed out by Jackson (1983), both greenness and

brightness depend on soil reflectance so the greenness does not necessarily provide

an independent measure of the amount of vegetation present. In many of the urban

areas the Tasselled Cap rotation produces nonsensical results in which a single

greenness value often corresponds to a variety of land cover types–including some

on the grey axis (soil line) that presumably contain no vegetation. This is

particularly evident in arid settings like Cairo and Damascus where unvegetated,

high albedo areas end up with moderate greenness values. In contrast, the spectral

endmembers are constrained to sum to unity, are more nearly orthogonal (figure 10)

and are directly related to the physical components contributing to the mixed

radiance measurements. Endmembers chosen to bound the global mixing space will

still produce estimates that are linearly related to the scene-specific endmembers so

they can easily be calibrated with validation measurements (Small 2001a).

One of the primary advantages of the linear mixture model is the straightforward

physical interpretation. Representing the urban mosaic as combinations of High

Albedo, Dark and Vegetation reflectance is a gross simplification but it accurately

represents the most important physical properties of the surface reflectance of a

wide variety of developed and undeveloped land cover types. The consistency of the

three-endmember urban mixing space has been verified both at higher spectral

resolution with AVIRIS hyperspectral imagery and at higher spatial resolution with

Ikonos imagery (Small 2001c). It is, however, important to remember that the

Landsat mixing space is a low dimensional projection of a higher dimensional

mixing space. Because the Landsat sensor lacks the spatial and spectral resolution

necessary to discriminate the wide variety of reflectances present in the urban

mosaic, each endmember may represent a variety of different materials. For

instance, several distinct high albedo surfaces (e.g. concrete, sand, gravel) can have

very similar reflectance vectors when imaged by Landsat and therefore would all

reside near the High Albedo endmember. The Vegetation endmember is generally

the most well constrained and corresponds to grass or dense agriculture. Forest and

open canopy vegetation contain an internal shade component and are represented

along the mixing line between the Vegetation and Dark endmembers. The Dark

endmember usually corresponds to clear water or deep shadow. Water containing

suspended sediment and biological productivity is more reflective so it occurs along

the mixing line between the High Albedo and Dark endmembers. The High Albedo

endmember is the most compositionally variable and the least constrained by the

mixing space topology. In undeveloped areas, the High Albedo endmember usually

corresponds to rock or soil with high SWIR reflectance but the divergence of the

mixing space often results in a wide variety of spectra near the high albedo apex of

the mixing space. The spectra in figure 6 show the range of High Albedo

endmembers selected for each of the 28 images. This variability detracts from the

accuracy of estimates for pixels with large High Albedo fractions but this error

diminishes in proportion to the High Albedo fraction so its overall impact on urban

reflectance estimates is relatively small.
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The principal finding of this analysis is that built-up urban areas occupy different

but distinct regions of a common spectral mixing space. In spite of the diversity of

urban settlements and land cover types, the three-endmember linear model can

represent the mixed radiance that results from them reasonably well. There is,

however, significant variability in urban reflectance, both within and among cities.

In each case the majority of the pixels in the built-up urban centre occupy a distinct

region within both the local and global mixing spaces. Figure 11 shows some

comparative examples of mixing space clustering of different urban centres. The

example pairs where chosen to illustrate cities with both similar and different mixing

spaces. Combining contrasting pairs of cities in the same mixing space highlights the

Figure 10. Comparison of Tasselled Cap Brightness and Greenness with low order principal
components and endmember fractions. Aside from the reversed polarity of the first principal
component, the first two components of the global composite are very similar to the Tasselled
Cap Brightness and Greenness. In the New York image, the grey axis (soil line) is almost
perpendicular to the Greenness component but it is not parallel to the brightness dimension in
the global image. In the case of the Cairo image, the grey axis has almost equal components of
Brightness and Greenness. In all three cases the High Albedo and Vegetation endmember
fraction distributions are orthogonal.
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Figure 11. Mixing space separability of urban reflectance. Contrasting examples of urban
reflectance are illustrated with composite scatter plots highlighting the localization of built-up
urban cores in the global mixing space. Each scatter plot shows the subset of the global mixing
space corresponding to 1 000 000 pixels from the pair of urban area images shown to its left.
Arrows point to localized clusters of urban reflectances corresponding to the highlighted areas
on the grey shade image. Reflectance vectors show spectra extracted along transects across
each mixing space cluster. Most built-up areas occupy distinct parts of the mixing space but
there is some overlap, as seen in Calcutta and Tianjin.
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spectral similarities and differences. Each mixing space in figure 11 represents

1 000 000 pixels equally divided between the two cities in the adjacent global

composite image. Cairo has two distinct clusters corresponding to the smaller

settlements in the adjacent Nile delta and to the city itself. Both of these are distinct

from the lower albedo Taipei cluster but some of the large thoroughfares in Cairo

are spectrally similar to Taipei. In contrast, Calcutta and Tianjin share part of a

single elongate cluster on the grey axis while other parts of Calcutta correspond to a

mixing line between the Vegetation endmember and the grey axis. New York is also

characterized by two distinct mixing lines while Beirut occupies a single distinct

cluster with a greater high albedo component. The reflectance vectors show the

spectral progression along these mixing lines and within the clusters. The urban

pixels highlighted in each example correspond to the specific clusters in the mixing

space indicated by the arrows. The spectral extent of the cluster highlighted in the

mixing space determines the geographic extent of pixels highlighted on the image. In

this example, these extents are selected arbitrarily to illustrate the correspondence of

specific regions of the mixing space to the built-up areas visible on the adjacent false

colour image.

The implication of spectral clustering is spectral consistency. This consistency can

facilitate discrimination of built-up urban areas. In spite of the spectral

heterogeneity at pixel scales, urban areas are distinguishable from undeveloped

land cover within the mixing space. In fact, it is often the heterogeneity of urban

land cover that distinguishes it from other land covers that are more spectrally pure

and occupy distinct domains within the mixing space closer to the endmembers.

Figure 11 indicates that compact regions in the mixing space correspond to quasi-

continuous urban centres in geographic space. In contrast, continuous geographic

areas generally contain a wide range of spectral mixtures, including many spectrally

pure pixels residing at the periphery of the mixing space. This explains the low

accuracies that often result when traditional supervised classification is applied to

urban areas. The choice of a single urban class on the basis of geographically

continuous training areas can combine a wide variety of mixed and pure reflectances

which generate a diffuse likelihood function that overlaps many other classes

thereby generating errors of both omission and commission.

Characterizing urban reflectance as spectral mixtures can provide a basis for

mapping urban areas with moderate resolution multispectral imagery. Urban areas

almost always contain a variety of pixels spanning a wide range of mixing fractions

but this study indicates that a majority of them often correspond to a distinct cluster

of spectrally heterogeneous pixels within the mixing space. This would suggest that

built-up areas could be isolated in mixing space more effectively than in geographic

space thereby producing a conservative classification of the mixed pixels while

avoiding errors of commission resulting from overly inclusive likelihood functions.

If a continuous urban area classification is required, the incomplete (granular)

geographic classification could be morphologically closed by filling holes

(reclassifying interstitial endmember pixels with the majority neighbour class).

This could be done within a prescribed size range to preserve large intraurban

features like parks. This would produce a spectrally based classification that could

accommodate the spectral heterogeneity that is characteristic of urban areas

worldwide. In fact, the consistency of the mixing spaces and the granularity of the

urban areas in this study suggests that spectral heterogeneity may be the most

characteristic feature of urban reflectance.
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This analysis also highlights the diffuse nature of urban areas and the complexity

of the urban-rural transition. The spectral transition spans the heterogeneous city

centres along the grey axis within the mixing space as well as the more homogeneous

undeveloped surrounding areas at the periphery of the mixing space. In most cases

this transition occurs across a finite distance rather than abruptly at a sharp urban-

rural boundary. In temperate developed countries this transition often corresponds

to a vegetation gradient from sparsely vegetated city centres, through increasingly

vegetated suburbs, to more densely vegetated forests and agricultural areas at their

periphery. Representing reflectance as endmember fractions makes it possible to

classify urban areas and their transitional surroundings on the basis of a continuous

field variable, such as vegetation fraction or albedo. Continuous field variables can

more accurately represent the true ‘fuzzy’ nature of complex entities like cities. SMA

provides a physically based analogue to fuzzy classification thereby avoiding the

unrealistic thresholds required by traditional ‘hard’ classification schemes in which

each pixel receives a single binary class assignment. In this sense, continuous fields

better represent the true nature of urban areas characterized by scale-dependent

transitions between different combinations of land use. By accommodating

heterogeneity, a continuum definition of urban areas may provide a more flexible

and accurate depiction of spectral properties as well as the other physical and even

socio-economic parameters that define cities.
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