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ABSTRACT 

 

Evaluating the total numbers of people at risk from infectious disease in the world requires not just tabular 

population data, but data that are spatially-explicit and global in extent at a moderate-resolution. This 

chapter describes the basic methods for constructing estimates of global population distribution with 

attention to recent advances in improving both spatial and temporal resolution. To evaluate the optimal 

resolution for the study of disease, the native resolution of the data inputs as well as that of the resulting 

outputs are discussed. Assumptions used to produce different population datasets are also described, with 

their implications for the study of infectious disease. Lastly, the application of these population datasets in 

studies to assess disease distribution and health impacts are reviewed. The data described in this chapter are 

distributed on the accompanying DVD. 
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I. INTRODUCTION 

Deriving population at risk estimates as a basis for evaluation of disease burdens requires spatially-explicit, 

moderate-resolution population data at the global scale. In this chapter, methods for constructing estimates 

of global population distribution that are suitable for geographic analysis are described. Though the basic 

approach has been used widely for more than a decade, particular attention is given to recent advances to 

increase both spatial and temporal resolution. As global data products are dependent on a diverse set of 

inputs, issues related to input and output data resolution have an immediate bearing on the suitability of the 

resulting data sets for a given task. This paper also reviews applications of these population databases in the 

health sector, in particular for the study of infectious disease. Finally, the population and associated data 

files that accompany this volume are briefly described. 

 

1.1 Rendering Population on a Global Grid 

Global or broad-scale inquiry on the relationship between population and environmental factors such as 

disease vectors or habitats is intrinsically spatial. While notable exceptions exist, especially at the local 

scale, two key barriers have contributed to the paucity of spatially-oriented analysis: (1) the methods of 

analysis require some knowledge of geographic data and tools for analysis; and (2) population data, at 

regional and global scales, have tended to be recorded in national units that do not permit cross-national, 

subnational, or cross-habitat analysis. These barriers have been slowly eroding. One trend that has 

contributed to this is that the collectors and custodians of demographic data—the national census and 

statistics offices—increasingly compile and distribute data for small administrative or statistical units. 

While data from population censuses conducted before the 1990 round of population censuses were often 

published only for the country and major divisions such as provinces or states, more recent census output 

often includes digital census databases with detailed demographic data for districts, subdistricts or even 

“enumeration” areas (EAs), the smallest geographical unit in most census operations. 

Great progress has been made in harmonizing subnational data released for different dates so that 

they are comparable across international borders. First, since census years are not synchronized across the 

world, this involves interpolation or extrapolation of population estimates to a common base year. Second, 

subnational reference units can be vastly different in size and shape across countries. For spatial analysis it 
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is often preferable to instead record population estimates on a set of standardized reporting units, such as 

regular grid cells. Grids are more commonly used to collect or compile data describing natural phenomena. 

In interdisciplinary work, conversion to a regular grid imposes consistency that would be more difficult to 

achieve with irregularly shaped census or administrative units. Methods that transform population data 

from native census units (which correspond to vector format) to a regular raster grid are the main focus of 

this paper. A third harmonization issue arises for other demographic variables where, despite efforts by the 

United Nations and others to promote common definitions, indicators are often not entirely comparable. 

This is a major reason why global, georeferenced demographic databases have so far focused on the 

simplest of all demographic variables: total population. 

 Efforts to estimate population distribution for a regular raster grid predate the computerization of 

geography that started in the 1980s. Early examples such as Adams’ (1968) map for West Africa served 

largely cartographic purposes. Census offices, most notably those of Japan and Sweden, also produced 

national population grids for inclusion in national atlases (e.g., Tufte, 1990 on Japan). Computerized 

population maps for individual countries were produced by the US Census Bureau using rectangular grid 

cells superimposed with circles for major urban areas (Leddy, 1994). Deichmann and Eklundh (1991) 

presented a continental, gridded population database for Africa used to investigate interactions between 

population and land degradation. Others, such as Martin and Bracken (1991), developed techniques for 

producing local-level population grids (see Clark and Rhind, 1992; Deichmann 1996a for reviews). 

 

1.2 Institutional Stewardship 

While national statistical offices produce population estimates that are sometimes linked to spatial data, few 

agencies render their population estimates on a common grid. The first efforts to place population data on a 

global scale latitude-longitude grid were completed in the mid-1990s at the National Center for Geographic 

Information and Analysis at the University of California, Santa Barbara (Tobler et al., 1997). This initial 

data set was itself an outgrowth of prior work on regional and continental databases. The Global 

Demography Workshop held in 1994 at CIESIN (the Center for International Earth Science Information 

Network, now part of the Earth Institute at Columbia University) brought together experts in the field and 

helped advance methodological development and database creation for the first global grid. CIESIN is the 
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locus of current global efforts, though it works closely with partnering institutions. Like many complex, 

global data products, the Gridded Population of the World (GPW) database has evolved with numerous 

partners. Subsequent versions have included different collaborators, inputs, and outputs, but the guiding 

principle is to achieve the best possible suite of data products representing the distribution of human 

population, sometimes heuristically (i.e., without modeling) and sometimes with light modeling 

(Deichmann, 1996a). The fewer assumptions and inputs that are used in the construction of the databases, 

the fewer restrictions have to be imposed on the appropriateness of use in a wide-variety of applications. 

For example, if land cover were used to predict population densities, one could not predict expected 

changes in land cover from a resulting population distribution[s] that included land cover as a reallocation 

factor, as it would be endogenous. 

Since the first version of GPW, several key advances have been made: the spatial resolution of 

administrative boundary data is improving; national statistical offices and spatial data providers and related 

institutions are adopting more open-data policies; population and spatial data providers are increasingly 

aware of, and increasingly collaborate with one another; and the computing capacity to manage, 

manipulate, and process increasingly large data sets is continually expanding (Balk and Yetman, 2005). As 

a result of these advances, some countries now produce and disseminate high-resolution spatially explicit 

population data. In local studies, nationally produced data are typically superior (i.e., of higher resolution, 

with more variables, and so on) to globally rendered data. Researchers asking highly place-based questions 

should begin with locally available data, if possible. Nevertheless, many questions are regional in scale, or 

at least span across more than one country, or require data that have been transformed to a common grid. 

For those problems, the data in this paper are highly suitable. 

The basic global database to arise out of these efforts is the GPW, now in its third revision, with 

large gains to resolution having been made with each revision. In addition to the key advances described 

above, advances in ancillary data to allow for light modeling, especially valuable where input data are of 

suboptimal spatial resolution, have allowed for more sophisticated but still simple modeling. Thus, GPW 

and related population data products are the main focus of this chapter. The resulting data sets are also 

included in the accompanying DVD. Details on the variations in these databases, their methods, 

assumptions, and limitations follow. 
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2. DATA 

 

The georeferenced population datasets that are the focus of this paper share as a critical common 

characteristic: the fact they are constructed with an emphasis on the highest resolution input data, rather 

than focusing on statistical or heuristic prediction of population distribution from coarse input data. That is, 

they attempt to measure the distribution of the population of the world, as measured at one’s usual place of 

residence. The basic premise is that no amount of further processing or modeling can substitute for 

obtaining population counts for the smallest geographic reporting units available. Censuses in many 

countries are far from perfect and reliable civil registration systems exist only in a small number of 

countries. These sources provide the only complete enumeration of a country’s population and by 

definition, provide the only geographically complete count of residents. By making additional assumptions 

about regularities in population distribution, it is possible to further disaggregate the reported district or 

sub-district totals, but usually one cannot then reliably assess how accurate the resulting distributions are 

because there is no basis for sound validation. Population distribution modeling should therefore be 

considered a last resort in the absence of enumeration area population maps, rather than as a goal in itself. 

When modeling is undertaken, the inputs of that model, and the means for the redistribution should be 

made as transparent as possible. 

The differences in these evolving data products are reviewed in Table 1 and are discussed in 

subsequent sections. Fundamental modifications include an increase in input resolution by over 20 times 

from the first to the current version of GPW (Balk and Yetman, 2005), and nearly a tripling again for the 

modeled data products of the Global Rural Urban Mapping Project (GRUMP) (Balk et al., 2005a). 

Increases in the input data enabled a corresponding increase in output resolution from 5 arc-minutes of 

GPW version 1 to 2.5 arc-minutes for later versions of GPW and related products. The data products from 

the GRUMP effort utilize higher resolution inputs, and thus outputs have been rendered at a 30 arc-second 

resolution. 

 

< Insert Table 1 about here> 
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The basic method by which population counts are transformed from census units to a grid, 

developed for the first version of GPW (Tobler et al., 1997) and modified slightly for GPW v2 (Deichmann 

et al., 2001), remain the same in the third version; related databases with light modeling use additional 

methods, but the basic method underlies all of these databases. Population data are transformed from their 

native spatial units which are usually administrative division of irregular shape and resolutions (see Figure 

1) to a global grid of square latitude-longitude cells at a resolution of 2.5 arc minutes (i.e., approximately 

4.6 km at the equator). The main inputs consist of geographically referenced boundaries of administrative 

or statistical reporting units at the highest available resolution—ideally the enumeration area, but more 

typically at district or sub-district level. The methods used to distribute the reporting unit total population 

numbers across the raster grid cells that fall into that unit differ slightly between the different versions of 

GPW and closely related data. These will be discussed below. Temporal adjustments are discussed in 

Section 3. 

 

< Insert Figure 1 about here> 

 

2.1 Gridded Population of the World (GPW) 

The Gridded Population of the World (GPW) database uses two basic inputs: non-spatial population 

estimates (i.e., tables of population counts listed by administrative area names) and spatially explicit 

administrative boundary data. These are collected from hundreds of different data providers (often differing 

for the population and boundary data). The first part of the process is to match the population estimates 

with the administrative boundaries into what is known as polygon (or vector) format, and ensure that the 

resulting data are geospatially consistent (e.g., that all internal boundaries match, leaving no unaccounted 

polygons or island chains which might share a single population figure should they belong to the same 

administrative unit are not double counted), and sum to the national level population (as estimated by the 

data provider). These basic consistency checks mirror census principles of not leaving any resident out and 

not counting anyone more than once. To construct the GPW database, the administrative unit data in 

polygon format are converted to raster grids. In version 1, built-in geographic information systems (GIS) 

software functions were used to accomplish this conversion: grid cells that fall onto the boundary of two or 
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more units were assigned to only one reporting unit based on a simple majority rule. The total unit 

population was then proportionally allocated over all grid cells assigned to that unit. A second product from 

this effort used these grids as a starting point for a re-distribution algorithm called smooth pycnophylactic 

(mass-preserving) interpolation (Tobler 1979). The assumption underlying this approach is that those areas 

within a given administrative unit that neighbor regions with higher population densities are likely to house 

more people than areas that neighbor low population density regions. The previously homogeneous 

population figures in grid cells within each administrative unit are thus re-distributed taking grid cells in 

neighboring units into account. By iteratively adjusting grid cell populations on this basis, the method 

results in a maximally smooth surface while preserving total population within each reporting unit. 

The second and third versions of GPW retained most of the characteristics of the “unsmoothed” 

version of GPW v1, while significantly increasing the number of reporting units that served as input to the 

gridding routine. While version 1 relied on about 19,000 administrative units, version 2 used 120,000 and 

version 3 used 375,000 units with much of the increased precision achieved in developing countries (see 

Table 1). The main difference in processing in these newer versions lies in the way boundary areas between 

administrative units are treated. While version 1 allocated grid cells to only one unit even if it was shared 

by two or more (i.e., majority rule), GPW v2 and v3 use a proportional allocation so grid cells are assigned 

population in proportion to the area of overlap of grid cell and administrative units. Figure 2 (detail) and 

Table 2 illustrate this for a grid cell in the Dominican Republic. Proportional allocation is often referred to 

as an areal weighting scheme (e.g., Goodchild et al., 1993). 

 

<Insert Figure 2 and Table 2 about here> 

 

2.2 Global Rural Urban Mapping Project (GRUMP) 

The allocation mechanism for the global urban rural mapping project (GRUMP, Balk et al., 2005a) builds 

on the GPW approach but explicitly considers population of urban areas. In addition to data for statistical 

reporting units, the project collected population estimates, point location and the approximate footprint for 

urban centers in each country. The objective is to disaggregate the urban area populations from the total 

population of the administrative unit into which the urban area falls. This allows us to allocate urban and 
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rural population separately, which effectively increases the number of input units and thus the effective 

resolution of the population grid. 

In contrast to GPW, estimates of population for urban centers were needed in addition to 

population estimates associated with their census boundaries. Much less investment has been required from 

national statistical agencies to collect and publish population estimates for urban areas, unless these are 

entirely consistent with the census information for administrative units (which is rarely the case). 

Nevertheless, city population figures are published in a variety of sources. These data were collected and 

then matched with the urban footprint. That matching also occurs through a series of steps starting with 

simply a name-match of the populated places with geographic locations (i.e., latitude and longitude of the 

presumed center of the urban area). The geographic coordinates were found in national or international 

gazetteers, such as that of the U.S. National Geospatial Intelligence Agency (see Balk et al., 2005a for 

details). 

A more challenging problem was to determine the footprint of major city areas. The most 

important source are night-time satellite images that show areas lit by streetlights and other permanent light 

sources that are concentrated in urban settlements (Elvidge et al., 1999). In cases where statistical sources 

indicated a city that could not be detected on night-time satellite images—a common occurrence in 

Africa—urban areas were delineated from other sources (e.g., Tactical Pilotage Charts) or approximated by 

circles whose size was given by population-area relationships calibrated (through a regression analysis) on 

existing data. It is acknowledged that a circle is not an accurate form for any city, but this assumption was 

the most practical one to implement and the basic shape from lights for small extents tends towards 

circular. Circle-generated extents in each country were cross-validated with other locations of near 

population size to confirm that the sizes were on the same order of magnitude. Conversely, footprints that 

could not be matched with populated place information were not assumed to have population, and were 

discarded from the data. The population estimates, matched with geographic point locations were 

summarized for each footprint, producing an urban extent dataset with population estimates. 

 The final step was to use these many pieces of information—which are summarized as 

administrative regions with population estimates and urban extents with population estimates (shown as 

Panels 1A and 1B respectively in Figure 3)—and generate a population grid (Panel 2B, Figure 3). Because 
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these come from different sources, it is important to make sure that the urban area population totals do not 

exceed those of the administrative areas in which the urban areas are located. Thus a model is used to 

reallocate population of the administrative areas given the population of the urban areas, the total 

population of the administrative area, and minimum and maximum criteria about each country’s 

urbanization trends (details are given in Balk et al., 2005a). The output resolution for this grid is 30 arc-

seconds, similar to that of the night-time lights data. The GRUMP population grid also uses a proportional 

allocation rule in gridding. 

 

2.3 Accessibility Modeling 

The final set of gridded population data sets reviewed here are based on an additional set of assumptions 

about population distribution: the basic premise is that people tend to live in or close to cities and tend to 

move towards areas that are well connected with urban centers. Even in rural areas, it is expected that 

densely populated areas are closer to transport links than more isolated areas, and higher densities are 

nearer cities than the hinterland. These stylized facts concerning the distribution of people across space are 

implemented using the concept of accessibility—a measure of the ease by which destinations such as 

markets or service centers can be reached from a given location. In practice, these measures are adapted 

from the well-known gravity model of spatial interaction (Haynes and Fotheringham, 1984). They represent 

the sum of an indicator of size or mass at destinations (such as population of surrounding cities), inversely 

weighted for some function of distance. The ideal measure here is an estimate of travel time using the 

shortest route on a geographically referenced transportation network of roads, rivers, rails and so forth. The 

resulting access estimates for each grid cell are then used to proportionally distribute each administrative 

unit population total across the grid cells that fall into it. This approach has been implemented for 

continental scale databases for Africa, Asia and Latin America, with support from the United Nations 

Environment Programme, the International Center for Tropical Agriculture (CIAT) and others. Nelson and 

Deichmann (2004) describe the latest version for Africa and document the modeling approach in detail. 

The most important input into the model is information about the transportation network 

consisting of roads, railroads and navigable rivers and their associated speeds of travel (i.e. 60 km per hour 

for 2-lane paved roads, 30 km per hour for railroads, etc.). The second main component is information on 
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the location and population of urban centers, which are then linked to the transport network. These inputs 

are used to compute a measure of accessibility (Vi) for each node (intersection) in the network, which is 

based on the sum of the population of towns (Pk) in the vicinity of the current node weighted by a function 

of travel time across the network between the node and the towns f(dik). Figure 4 illustrates the computation 

of the accessibility index for a single node based on the weighted sum of the population of four towns that 

are within a given travel time threshold. 

 

<Insert Figure 4 about here> 

 

The accessibility values at each node were interpolated into a raster surface to create an 

accessibility index for each grid cell. Raster data on inland water bodies (lakes and glaciers), protected 

areas and altitude were then used heuristically to reduce the accessibility potential in areas where there is 

no or little population. Accessibility values in water bodies and areas of extremely high altitude were set to 

zero. Accessibility values in protected areas and forest reserves were reduced by 80% and 50% 

respectively. Both adjustments were heuristically chosen in the absence of empirical data. 

The accessibility values estimated for each grid cell serve as weights to distribute population 

proportionately. The grid cells in the accessibility index were summed within each administrative unit. 

Each value was then divided by the corresponding administrative unit sum such that the resulting weights 

sum to one within each administrative unit. Multiplying each cell value by the total population yields the 

estimated number of people residing in each grid cell. The standardization of the accessibility index implies 

that the absolute magnitudes of the predicted access values are unimportant—only the variation within the 

administrative unit determines population densities within each district (Deichmann, 1997; Nelson and 

Deichmann, 2004)—but that, similar to GRUMP, the sum of grid cell population values for each unit 

cannot exceed the value for the administrative unit in which they fall. 

 

2.4 Highly Modeled Surfaces 

Another recently developed dataset, LandScan, takes a highly modeled approach, whereby much less 

investment is made in using the highest-possible resolution population data (ORNL, 2003). This data set is 
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categorically different from those described above, in that it does not attempt to represent night-time, 

census residence or usual population but rather it aims to measure an "ambient" population—i.e., the 

average location of an individual across seasons, days of the week, and times of day. Instead, effort is spent 

on getting annual updates to relatively coarse-level population inputs, and to ancillary data (including 

roads, night-time lights, elevation, slope, and land cover) to be fitted to a complex model (Dobson, 2000). 

The specific model parameters or their calibration are not published and, thus, it is difficult to assess the 

appropriateness or accuracy of this approach. LandScan, receives less attention in this chapter but is briefly 

discussed where it has been applied in the studies below. 

 

3. METHODOLOGY 

Though the basic method for redistributing population from census and other units to a grid has been 

discussed, there are additional methodological requirements. For each reporting unit, a consistent 

population estimate for a baseline year is obtained. Where no census data or official estimates are available 

for the target year, a population figure is estimated using census year population and inter-censal growth 

rates. 

 

3.1 Adjusting Population Estimates to Target Years 

Key inputs in all population databases reviewed in the previous section are subnational population totals 

typically available for small administrative or statistical reporting units. The standard source for such data 

is a national population and housing census, or, in some instances, a large demographic survey. Population 

censuses are undertaken periodically, in many countries once a decade. Exceptions are countries in which 

well functioning civil registration systems make periodic census taking unnecessary. Many countries take 

their censuses on the decadal year (1980, 1990, 2000), others take them on the first year thereafter (1991, 

2001). (The US Census Bureau maintains an inventory of past and future census dates for each country at 

www.census.gov/ipc/www/cendates/.) Some countries produce inter-censal estimates. Other countries, 

particular those experiencing civil unrest, with few resources, or where census information may be deemed 

to be politically threatening, tend to have less regular censuses taken at wider intervals than once per 

decade. 
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 Given that the population data are collected in different years, the small area population totals 

need to be reconciled by estimating population for the target years of interest. In GPW version 3, these are 

1990, 1995, and 2000, as well as a projection for 2015. GRUMP is similarly produced for 1990, 1995 and 

2000. The regional Africa and Latin America data sets that are based on the accessibility model include 

population estimates for 1960, 1970, 1980, 1990, and 2000. For most countries, where two native 

population estimates were available from the national statistical offices, an average annual population 

growth rate was computed, as follows: 

 

t
P
P

r
⎟
⎠
⎞

⎜
⎝
⎛

= 1

2ln
      (1) 

 

where r is the average rate of growth, P1 and P2 are the population totals for the first and second reference 

years, and t is the number of years between the two census enumerations. This rate was then applied to the 

census figures to interpolate or extrapolate population totals to the target years. For example, the 1995 

estimate is calculated: 

 

P1995 = P1 ert               (2) 

 
Some countries had only one population estimate. This includes newly formed states (e.g., 

Croatia) as well as countries that for either economic or political reasons have not conducted a census or 

released census results since 1990 (e.g., Angola). Others have conducted a recent census (e.g. Afghanistan) 

but administrative areas have changed to an extent that it cannot be matched with prior censuses. 

Additionally, many small islands have infrequent censuses and do not have subnational data. In these 

instances, national level growth rates from the United Nations were used in lieu of intrinsically calculated 

growth rates (United Nations, 2001). 
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3.1.1. Boundary Matching Over Time 

The GPW population surfaces use only population and boundary information, and the other datasets use 

these data in combination with other sources. These pieces of information are linked. Where boundaries 

have changed over time, as they often do, considerable effort is made to reconcile the differences. For 

example, if a district in 1990 were split into two districts in 2000, the population for the two districts in 

2000 would be summed so as to represent the same areal distribution as given in 1990. (It is usually 

impossible to adequately divide the population for the given district of 1990 in the absence of information 

provided by the census office to this effect.) As higher resolution data are collected, the need for 

reconciling boundary changes become greater, because lower level units such as districts are modified more 

frequently than provinces or states. Fitrani et al., (2005), describe how decentralization in Indonesia led to a 

sharp increase in the number of local governments and associated boundaries (from 292 in 1998 to 434 in 

2004). In many countries, changes are less dramatic, but reconciling boundaries and reporting unit 

identifiers nevertheless poses one of the most challenging problems in compiling detailed, cross-national 

population databases. Interpolating or extrapolating population figures to a common base year often 

requires the use of a hybrid method, whereby growth rates are calculated at a level where boundaries have 

not changed (e.g., provinces), and applied to higher resolution subunits such as districts. 

 

3.1.2. Temporal Aspects of Ancillary Data for Modeled Population Grids 

Unlike the GPW databases, GRUMP and the Accessibility Model also use other datasets, which represent 

phenomena that change over time: changes in urbanization and infrastructure. Unfortunately, the current 

versions of these databases are limited to a single snapshot. The urban extents are derived primarily from a 

stable city-lights database from a 1994-95 composite and the roads data are approximately as of the year 

2004. Users of these databases, interested in changes over time, should be well aware of this limitation. 

 Future versions of this database will be able to incorporate improved temporal coverage, since the 

night-time lights data are being processed for additional time periods. Although, additional research will be 

required to confirm that changes in night-time satellite derived urban extents truly reflect land use change 

surrounding major urban areas rather than changes in sensor characteristics or processing. Should time 

series of road networks become available, they too could be incorporated. Alternatively, historical transport 
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networks can be approximated by altering the speed of travel over particular surfaces to represent the 

poorer condition of the transport network in the past, and envisaged better conditions in the future. 

 

3.2 Limitations of the Ancillary Data 

GRUMP and the Accessibility Model rely on ancillary data because in all instances the best possible data 

are not available. For this reason, it is important to understand the strengths and weaknesses of those data 

sources before applying them. While some of the issues associated with the temporal shortcomings have 

been mentioned, there are other caveats unrelated to temporal concerns. 

There have been many uses of the night-time lights data as a proxy for urban areas (Elvidge et al., 

1997; Sutton et al., 2001; Pozzi et al., 2003; Schneider et al., 2003), and these data are the only globally 

consistent and repeated sources of likely urban areas. Nevertheless, they have a few key limitations: they 

are known to over-represent built-up area, an effect called “blooming”. The blooming effect depends on 

intrinsic characteristics of the sensor and on geolocation errors in the compositing process (Elvidge et al., 

2004). Studies have shown that it is not possible to find a unique threshold to reduce the blooming effect 

that would work globally (Small et al., 2005). In fact, a 10% threshold could reduce the blooming effect 

without significantly affecting many individual small settlements for the 1994/1995 dataset. But this 

threshold does not provide a globally consistent basis for relating lighted areas to urban extent, since the 

characteristics of the blooming effect are, to some extent, city and country specific. Thus heuristic or ad 

hoc adjustments of this nature would make data analysis questionable. A second shortcoming of these data 

is that they under-represent small settlements that are either poorly or infrequently lit due to insufficient 

detection by the sensor. This is a particular problem in Africa or rural Asia where population data are also 

often sparse. 

 Given the limitations with the night-time lights data, GRUMP protects against over estimation of 

urban extents that are false-positives—i.e., lights at industrial sites which may not be (or are sparsely) 

populated—by requiring additional information for validation (i.e., a name, location, and population 

estimate corresponding to the light). GRUMP also uses additional sources and indirect techniques to 

estimate extents for known population that fall below the sensors detection threshold as discussed above 

(see Balk et al., 2005a). 
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For small scale or even regional applications, the urban mask associated with the GRUMP data 

may produce areal extents that are larger than expected. In these instances, use of the urban extent mask if 

used with the GRUMP population grid may provide sub-urban population detail that might assist in further 

delineating the more and less densely populated areas within these enlarged—or agglomerated—urban 

areas and thus indicating features (density) that are associated with urban gradients. Reliance on the extent 

mask in and of itself may lead to overestimation of urban areas. For example, Tatem et al., (2005) found 

that the GRUMP urban mask over-estimates urban extents for Kenya when compared with data derived 

from higher-resolution satellite imagery. 

Future versions may be able to use improved night-lights products, both in their ability to reduce 

the blooming (though that work is just underway) and to make use of lights detected at more than a single 

time point. GRUMP was developed when only the 1994-95 product was available, but subsequent to that 

1992-93 and 2000 releases have become available. These are not fully analogous data sets, so additional 

work to determine their utility for urban detection would first be required. 

Similarly, for use in the Accessibility Model, there are few data sources that provide consistent, 

geographically referenced transportation network data for large areas such as an entire continent. The 

combination of the VMap0 spatial data with the improved attribute data and the transport data used for the 

African Accessibility Model should be viewed as currently best available for the given constraints. The 

spatial data for the African transport network is derived from the Vector Map (VMap) Level 0 layers for 

roads, rivers and railroads (NIMA, 1997). VMap0 is an updated version of the Digital Chart of the World 

(DCW) and is suitable for applications at a scale of 1:1 million. While this provides a consistent level of 

spatial detail for Africa, the transport links in the database do not contain sufficient information about their 

characteristics (road quality, road type), which is essential for computing the travel times in the 

accessibility model. For most of Africa, roads are the most important means of transport, and so the 

attributes of the road links were substantially improved through the use of continental scale paper maps of 

Africa at a scale of 1:4 million (Michelin, 2004). These maps were used to identify 132,000km of Major 

Roads and 282,000km of Secondary Roads (11% and 22% of all roads in the VMap0 layer respectively). 

There are many uncertainties in the spatial and attribute data for the transportation network. There 

is often no easy way to determine the original data source. It is also likely that the original scale of the data 



 

 16

varies from country to country. It is often hard to determine how current the data are and how data from 

different sources were reconciled at country boundaries. Indeed it is quite possible that the final 

transportation network does not represent consistently the state of the road network for any one year and it 

needs to be used with great caution in applications that require data at scales greater than 1:1 million or that 

require data for the state of the transport network for Africa pre-1990 or post-2005. Future improvements in 

the quality of continental scale transport networks will most likely depend on the public release of VMap 

Level 1 data at 1:250,000, or concerted regional efforts to publish consistent key data layers (such as 

SERVIR for Central America http://servir.nsstc.nasa.gov/home.html). 

 

4. HEALTH APPLICATIONS 

Since the earliest version of GPW and the Accessibility Models in the mid-1990s, health researchers have 

been using the data to better understand population exposure, vector-habitat, disease distribution, mortality 

and related factors (from habitat change to livestock distribution to the distribution of underweight 

children). These data have been used effectively at the regional and global scale, and in some instance 

(large areas or countries) in fairly specific local areas. Gridded population data have been used to assist in 

sampling for a health survey in Chad (Brooker et al., 2002, Beasley et al., 2002), to estimate the geographic 

distribution of underweight children (Balk et al., 2004a), to determine changing habitat (for example, Reid 

et al., 2000), and, to estimate population at risk of a specific infectious disease. Measures of population 

counts and density distributions have broad-scale health applications. Although the bulk of this section 

addresses the latter, a brief review of the former is also included, in part because gridded population data 

act as a proxy for a host of other health-related data. 

 

4.1. General Health Studies 

Regional studies of mortality and malnutrition have focused largely on understanding biological and 

socioeconomic factors associated with those outcomes. Spatially explicit data on those outcomes is 

typically not available. When survey or clinic data are georeferenced, as is increasingly the case, it becomes 

possible to consider a range of spatially explicit factors, including population density. Density relates to 

disease transmission—and ultimately health status—in a variety of ways. For example, person-to-person 
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transmission is likely to be high in densely populated urban areas, though such areas may reduce the 

potential for particular vector habitats. Population density estimates also provide continuous measures of 

the degree of urbanness (such as, high density core urban areas, or less dense semi-urban areas). In the 

absence of explicit data on the mode of disease transmission, or the vector habitat, and with careful use, 

population density may be a useful urban proxy and its associated characteristics. 

In a study of West African mortality, Balk and colleagues (2004b) confirm the complexities 

associated with measuring and interpreting population density: in urban areas, increases in population 

density reduced the risk of infant deaths, and the further away from an urban area, the greater the likelihood 

of infant death. In this study, density (GPW version 3) and the GRUMP urban extent mask (alpha version) 

are used as proxy variables for clinic or health services density (which were not directly measured). In a 

study of underweight status in African children, Balk and colleagues (2004a) find that population density 

(GPW v3, CIESIN and CIAT, 2004)—again acting as an urban proxy—decreases the likelihood of children 

being underweight. Similarly, Sachs and colleagues (Sachs et al., 2001; Gallup and Sachs, 2001) use GPW 

v2 to explain differences in the spatial pattern of poverty and disease burden in Africa. These studies find 

that coastal dwellers—in large part due to their access to ports, urban areas, and infrastructure—experience 

less poverty and a lower economic burden associated with malaria. 

 

4.2 Specific Diseases  

Population grids have become a key tool to understanding the populations at risk of various infectious 

diseases. Infectious diseases have vectors or other transmission routes that are generally highly location-

based or geographic in nature. The means to understanding the impact of specific disease burdens depends 

in part on the ability to identify spatially the areas at risk as well as understanding the population in those 

places. Matching these spatial units—disease numerators with population denominators—is a large part of 

the contribution that gridded population data make toward understand specific infectious diseases. 

In many low income countries, lack of resources and capacity in the health system prevent the 

development of reliable records of malaria morbidity and mortality. A large body of work has attempted to 

triangulate malaria risk and human population distribution to define population at risk. This work was 

pioneered in Africa with the development of the MARA/ARMA model of climate suitability for 
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Plasmodium falciparum transmission (Craig et al., 1999). Combinations of this map and the African 

population database (Deichmann, 1996b) were used to define age-specific populations at risk in 1995. 

These estimates were derived using national level age distribution data from the UN Population Division 

applied to subnational population totals. In combination with empirical epidemiological data from local 

studies, Snow and colleagues (1999a and b) produced estimates of morbidity and mortality for total and 

under-five year old population for Africa (see also Hay et al., 2000). This work was updated and 

augmented (Snow et al., 2003) to the year 2000 using the African population database (Deichmann, 1996b) 

to determine the proportion of the population in transmission risk categories and applying these to year 

2000 national population estimates from the United Nations (2001). The most accurate revision of these 

mortality and morbidity figures for Africa has been by using new extractions for the year 2000 using 

GPW3.0 (CIESIN and CIAT, 2004) and the MARA model (Hay et al., 2005a). This work is also 

incorporating the location of urban populations in Africa to discount morbidity and mortality estimates for 

the significantly lower malaria transmission in these urban areas. 

Recently these ‘population at risk’ assessments have been conducted using historical maps of malaria 

endemicity and its transmission extent to evaluate the changing population at risk between 1900 and 

modern times at the global scale (Hay et al., 2004). Using a similar approach to MARA/ARMA morbidity, 

estimates for P. falciparum have now been conducted globally (Snow et al., 2005). In addition, some 

(Rogers and Randolph, 2000; Van Leishout et al., 2004) have used GPW2.0 (CIESIN et al., 2000) to 

estimate population at risk under coupled scenarios of population and climate change. There are many 

issues involved with the choice of population surfaces and their derivation and these have been evaluated 

with respect to population at risk of malaria in Kenya (Hay et al., in press). Hay and colleagues show the 

paramount importance of the average spatial resolution of the input census data by comparing five 

population surfaces including GRUMP v1, GPW v2 and v3, the Accessibility Model (version 3 not the 

most current), and LandScan. Figure 5 compares the error associated with each dataset at varying levels of 

spatial aggregation: they all estimate about the same population at the most aggregated level (the first 

administrative level) but two stand apart, providing notably superior estimates—GPW v3 and GRUMP 

v1—at the highest resolution. (Note that this publication was not undertaken on the most recent versions of 

the Accessibility Model, in which the underlying inputs have been improved, or LandScan.). The results 
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also highlight issues involved and accuracy that can be obtained using simple interpolation techniques at 

different administrative levels where these might be locally available. Although the interpolation methods 

differ, the best-fit datasets are those with the highest resolution inputs. 

<Insert Figure 5 about here> 

 

Given the absence of reliable data on the total number of parasitic infections in a country, 

estimates have often been based on prevalence data from a few limited studies and extrapolated to the 

country as a whole. In order to make these extrapolations more accurate, global geo-referenced population 

datasets have been used increasingly. In particular, population totals and distribution from the Africa 

Population database (Deichmann, 1996b) and the first version of GPW (Tobler et al., 1995), along with 

district-level census data when available, have been used to estimate population at risk of parasitic diseases 

or to estimate the number of people infected. For example, different statistical models have been developed 

to estimate the number of individuals to be treated based on the prevalence of infection of a given disease 

and population structure and distribution (Brooker et al., 2000; Lindsay and Thomas, 2000; Noma et al., 

2002). Lindsay and Thomas (2000) use climate data to predict the distribution of lymphatic filariasis and 

overlay the resulting risk maps with a continental population grid (Deichmann, 1994) to estimate the 

number of people potentially exposed to the infection in Africa. 

The issue of identifying population at risk and priority areas for treatment has been addressed by 

combining gridded population data with remotely-sensed data. For instance, a recent methodology was 

developed to combine ecological zones defined using satellite-derived data (land surface temperature and 

photosynthetic activity averages) with population density and prevalence data to map population at risk of 

parasitic infections in different countries in Africa (Brooker et al., 2001a; Brooker et al., 2002; Kabatereine 

et al., 2004) and Asia (Brooker et al., 2003). The results provide a targeted sampling frame of schools to 

guide valid epidemiological surveys and the identification of priority areas for national school initiatives 

and mass treatment. Noma et al., (2002) use GIS to identify bioclimatic zones of potential for 

onchocerciasis and to select which communities should be surveyed. The results were used to define areas 

of varying transmission risk to guide the implementation of control strategies. Similarly, Brooker and 

colleagues (2001b) used an early version of the African Population grid (Deichmann, 1996b) to determine 



 

 20

populations at risk in particular locations resulting in observation of a significant relationship between the 

prevalence of Schistosoma mansoni and the distance of the schools from the lakeshore; as a matter of health 

policy, “distance to lakeshore” can now be used as a means to screen schools in East Africa. 

A related application is one where global population data were used to study the relationship 

between population distribution changes and associated habitat changes. For example, Reid and colleagues 

(2000) predict that population distributional changes will in effect reduce the cattle population habitat 

leading to the reduction of the tsetse fly population and sleeping sickness prevalence in the human 

population. 

Several uses of gridded population surfaces have demonstrated patterns in the distribution of 

human population vis-à-vis physiographic, climatic and other environmental parameters which may be 

closely linked to health and disease burdens. For example, Small and Cohen (2004) use GPW v2 to show 

that people tend to live at low altitude (with Mexico City being an important exception) and near permanent 

water sources (rivers and coasts) but that population is not nearly as localized with respect to climatic 

variables such as precipitation or temperature. Disease vectors may be influenced by all of these factors, 

thus demonstrating the need for moderate resolution population surfaces that allow for these factors to be 

disentangled in any given region of interest. In another study, Astrom and colleagues (2003), using GPW 

v2, find that populations residing above a certain altitude—due to the relationship with the physiological 

processing of oxygen at high altitude—experience lower tumor incidence. 

 In the wake of the Indian Ocean tsunami of 26 December 2004, the GRUMP population grid was 

used in combination with coastal buffer distances and elevation to estimate the population exposed to the 

great wave (Balk et al., 2005b): roughly 4 million persons were estimated to live within a 2 km buffer in 

the most affected regions. These estimates were then used to calculate death rates in some of the affected 

regions. National and moderate resolution subnational population estimates could not be used to rapidly, 

and without considerable assumptions, generate estimates of exposure to natural hazards. (Even if some 

countries had high-resolution subnational data, they would need to be gridded to make such calculations.) 

Further, this tragedy occurred across many national borders, reinforcing the utility of having a global 

population grid that is agnostic about national borders. A global study of natural disaster hotspots, has used 
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GPW to estimate the risk of mortality and economic loss from six major natural hazards (Dilley et al., 

2005). 

 Lastly, an exploratory study considers the relationship of population density to the location of 

newly emerging or re-emerging infectious disease (Patel, forthcoming) and while the evidence is 

preliminary and complex, it suggests that population dynamics, travel and trade routes, along with their 

implications on ecosystem change, may be causally related to disease emergence. 

 

5. DISCUSSION 

An intrinsic concern is that population input data are inevitably highly variable in terms of quality, 

resolution, and accuracy, in ways that are not quantifiable. In part that is the nature of dealing with 

demographic data, which represent social processes, but treating them as if they were an easily measurable 

physical variable (on a grid). Administrative units will always be larger in sparsely populated areas, and 

perhaps will have more detail than may be needed for some applications in high density places. Users 

should bear this qualitative constraint in mind when using these data. 

 

5.1. Ideal Spatial Resolution 

The ideal resolution for the study of infectious diseases and health will vary. Localized disease outbreaks 

might require information on village location, boundaries and associated population characteristics. 

Emergency response studies, such as the recent tsunami in the Indian Ocean (Balk et al., 2005b) require 

high resolution administrative boundaries, population and other demographic data associated with those 

boundaries, as well as infrastructure (e.g., health clinics) at risk. Where the emergency is brought on by a 

geophysical phenomenon that is best estimated with physical data (such as coastal distance, or elevation) 

gridded data are a pre-requisite for establishing baseline population exposure. For broad synoptic analysis 

of health environment issues, medium resolution data would likely be sufficient. 

The databases discussed herein have been constructed with enough information to incorporate 

uncertainty into the analysis. A simple measure for each pixel is the resolution—in this case, the size of 

geographic area—of the administrative unit from which the pixel population was derived or modeled. A 

grid of this indicator is available for version 3 of GPW. In practice, few people take the trouble to do 
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serious uncertainty or sensitivity analyses. The responsibility of data producers is to provide all relevant 

information about input data, document modeling and processing in excruciating detail, and leave it to the 

user to take this info into account. 

In the development of the aforementioned data products, it has been useful to construct a measure 

of effective resolution. Measured as the country-specific average resolution, it can be thought of as the “cell 

size” if all units in a country were square and of equal size, which of course they are not. It is calculated as 

follows: 

 

Mean resolution in km = )  /() ( unitsofnumberareacountry    (3) 

 

A closer look at the varying resolution (or area) of the administrative units reveals other key 

improvements in the database in the GPW efforts. The average resolution of all countries went from 60 to 

46, with improvements of 10 times or more for particular countries. Figure 6 shows the resolution 

improvements in Africa, for 4 versions of the Accessibility Model, by cumulative population. In the current 

version of the accessibility model, as with GPW v3, more than 60% of Africa’s population is represented 

by a mean resolution of 50 kilometers or better. This represents a significant improvement over prior 

models, including version 2 of the Accessibility Model and GPW v.1, where 60% of the population were 

represented by much coarser resolution,  more than three times coarser than the current resolution (about 

170 km). 

 

<Insert Figure 6 about here> 

 

 Though GPW has always sought to be based on inputs of the best-available resolution at the time, 

efforts to improve version 3 of GPW included acquisition of even higher-resolution data for countries with 

coarse resolution inputs and islands some of which required labor inputs to compile the basic data (such as 

digitizing). Earlier versions of GPW had less motivation (and resources) to do this, because the output 

resolution of 2.5 arc-minutes rendered finer input resolution redundant. The inputs for the third version of 

GPW were also used as an input to the GRUMP population surface that includes reallocations towards 
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urban areas and whose output resolution is 30 arc-seconds. Given the small footprint of many urban areas, 

the considerable investments in obtaining highest available resolution population data were necessary to 

achieve the best possible match between input and output resolution for each country. Often, these new 

inputs had to be digitized from imperfect source materials, since digital versions of these data were not 

available. For countries that are comprised of island chains, the improvements consisted of collecting 

island-level population data, and then assigning population to existing spatial inputs. GPW version 2 had 41 

countries with country-level (administrative level 0) data only, 31 of which were islands, which had an 

average resolution of 46. In version 3, fewer than half of these countries remain (with a slightly smaller 

share of them being islands) with an average resolution of 22. 

 

5.2. Conclusion 

As capabilities in refining the estimates of population distribution, urban areas, and associated 

infrastructure networks have increased, the more evident has become the localized nature of the distribution 

of human population. Improved estimates show that less, not more, land area tends to occupied by 

moderate and densely populated settlements, as shown in Figure 7, for the case of Ecuador. These spatial 

Lorenz curves show the cumulative fraction of the population as a function of cumulative fraction of land 

area where units are ordered by increasing population density. Forty-percent of Ecuador’s population lives 

on 15% of its land area according to GPW version 2. The improved resolution of GRUMP revise that 

estimate substantially, reducing it by more than half, to only 6% of the land area in this example. People 

live locally, are burdened by disease locally, and receive their health services locally. Gains in the 

improved resolution of human population distribution will continue to lead to a better understanding of 

disease and health, but these gains must also be matched with improvements in information on health 

clinics, health catchments, and infrastructure. 

 

<Insert Figure 7 about here> 

 

In the future, more high resolution data should become available so that modeling will be less and 

less necessary for most health analyses. While there may still be a need for modeled population data—for 
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example, to understand seasonal flows—the basic improvement would be to the baseline population 

distribution. Hence it is important is to ensure long term funding for maintaining and updating these data, 

and to ensure open data dissemination policies so that data are made easily available for science and policy. 

For health studies, priority next steps, apart from continuing to increase resolution, would be more 

consistent global time series (e.g., going back several decades to assess recent trends), and further 

demographic variables such as age distribution and other variables required to make rigorous spatial 

projections. 

 

6. DATA DISSEMINATION 

The following data are available on the accompanying DVD: the Gridded Population of the World version 

3 (beta) at 2.5 arc-minutes: population counts, land area, and population density; version 1 (alpha) of the 

GRUMP 30’ population surface, and the Accessibility Model for Africa. All grids are available in GeoTiff 

format. Users are strongly encouraged to visit the respective websites for updates and final versions. For 

GPW and GRUMP, see http://sedac.ciesin.columbia.edu/gpw, where users can also download the grids for 

2015, the GRUMP settlement points (alpha), and the urban extent mask (alpha), as well as ancillary data 

products associated with GPW (e.g., national coastline to match the population grid, and a grid of national 

identifiers). The website for Accessibility Model for Africa is 

http://na.unep.net/globalpop/africa/Africa_index.html. An updated version of the Accessibility Model for 

Latin America and the Caribbean is underway, and users should visit CIAT’s website 

http://gisweb.ciat.cgiar.org/population/ for updates. Users are strongly encouraged to supply feedback, and 

their publications that make use of these data, to gpw@ciesin.columbia.edu. 

 

6.1 Data Selection 

Before using the population surfaces on the companion DVD for analysis, a population model and spatial 

resolution must be chosen, and the data evaluated to ensure that its precision meets the study requirements. 

The population model chosen should avoid issues of endogeneity; i.e., GRUMP should not be used in 

predictive analysis with data from the Defense Meteorological Satellite Program (e.g., various night-time 

lights products), and vice versa, and the accessibility modeled data should also not be used in association 
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with transportation networks data. The choice of appropriate resolution—a 30 arc-second or 2.5 arc-

minutes—depends on the scale of the study. In general, the 2.5 arc-minute data are most appropriate for 

continental and large region studies; the 30 arc-second data are most appropriate for smaller regions and 

national studies. In some cases, sub-national studies are possible with the 30 arc-second data, but it is not 

possible to derive meaningful results for small area studies such as those for a single city. 

 For the GPW and GRUMP data, the administrative unit area grid (available from the GPW web 

site) may be used to determine the approximate locational precision of the population surfaces on a cell-by-

cell basis. The administrative unit area grid indicates the area of the administrative unit from which the 

population value was derived. Where multiple units contributed to a cell, the value is the weighted mean of 

the input administrative unit sizes. A cutoff mean administrative unit area value can be approximated by 

calculating the area based on a given radius. For example, to identify the cells with a locational accuracy of 

approximately 10 km or greater, a cutoff value of 314 would be used as cells with a value greater than this 

are derived from an administrative unit that cannot be enclosed by a circle with a radius of 10 km. In 

reality, a larger value should be used as very few administrative units are circular in shape. 

 

6.2 Methods and Issues in Analysis 

Using the population data surfaces requires a software package capable of dealing with raster data, such as 

ArcGIS™ (with the Spatial Analyst extension), Erdas Imagine®, Idrisi, GRASS, MatLab®, or any number 

of others. GeoTIFF is a well-known format supported in most packages that handle raster data; if 

translation is necessary the open source Geospatial Data Abstraction Library (GDAL). Available at: 

http://www.remotesensing.org/gdal/) can be used to convert the files to a number of formats. 

The most common form of analysis is to aggregate population totals in the surfaces by some other 

unit of analysis (such as ecological regions or habitats, buffers around points of interest such as health 

clinics, and so on) using a zonal statistics function. Population density grids may be used in a similar 

manner to characterize the variability of population within different zones; the minimum, maximum, mean 

and standard deviation of density values within a given zone is often more useful for inter-zone comparison 

than just the total populations of the zones. 
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Regression analysis with population counts or density as an explanatory variable or as a per capita 

denominator for explanatory variables other than population is another tool used commonly with these data. 

While there are many legitimate uses of these raster population surfaces in quantitative analysis of this 

type, care must be taken as raster data can invalidate the assumptions in classic regression. This occurs 

simply as a function of the self replicating feature of the gridded nature of the data. A raster layer 

comparison is useful for explanation but cannot be relied on for rejecting the null hypothesis at a given 

probability level (Openshaw, 1991) because they may be biased. That is, the original administrative area 

data would have had a single value which was distributed across far more grid cells. While the approximate 

value of each grid cell would be accurate each observed grid cell is not independent of one another (i.e., 

they are spatially dependent being from the same original administrative area polygon, and they inflate the 

number of observations). Geostatistical approaches based on point observations (GPW and GRUMP make 

centroids of the units used in gridding available for this purpose), or using the data to first construct 

variables based on zonal statistics, may be a better method. The examples given herein have paid attention 

to this caveat. These approaches can be accomplished with geostatistical extensions to GIS software or 

stand-alone software packages for working with spatial data (e.g., the ArcGIS® Geostatistical Analyst 

extension, or the free GeoDa software package). 
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Table 1 Comparison of Gridded Population of the World (GPW) versions and related databases 
 

 Gridded Population of the World (GPW)  

Dataset GPW v1 GPW v2 GPW v3 GPW 2015 Accessibility Model 

 Global Rural Urban 
Mapping Project (GRUMP) 

v1 

Publication year 1995 2000 2004 2004 2004 2004 

Years of estimation 1994 1990, 1995 1990, 1995, 2000 2015 1960-2000 1990, 1995, 2000 

Number of input units 19,000 127,000 376,500 376,500 Varies by continent c. 1,000,000 

Modeled inputs None None None None Infrastructure, Urban Areas Urban Areas 

Spatial Extent Global Global Global Global Africa, Asia, Latin America Global 

Authors  Tobler et al. CIESIN, IFPRI, & 
WRI

CIESIN & CIAT CIESIN, FAO, & 
CIAT 

Deichmann; WRI; CIAT, 
UNEP & CIESIN

CIESIN, IFPRI, World 
Bank, & CIAT

Gridded Surfaces resolution1 5’ 2.5’ 2.5’ 2.5’ 2.5’ 30” 

Population density • • • • • • 

Population counts • • • • • • 

Land area • • • • • • 

Population-weighted admin. units   • •  • 

Urban extent mask      • 

Settlement Points (xls, csv, shp formats)      • 

NB:. A dot indicates the dataset is publicly available. 1Gridded surfaces are available in these formats: eoo, bil, ascii formats 



Table 2 Areal weighting scheme to allocation of population whose boundaries cross grid cells 

 

Administrative unit name Administrative unit density (persons / sq km) Area of overlap (sq km) Population estimate for grid cell 

Santiago Rodriguez 64.2 5.3 340 

Santiago 246.5 2.2 542 

San Juan 75.9 12.8 972 

Total for cell 91.3 20.3 1854 

 



Figure 1 Administrative level used per country. 
 

 
 
Figure 2 Grid cell size in relationship to administrative boundaries, Dominican Republic. 
 

 
 
Figure 3 Process by which GRUMP Population Surface is constructed, illustrated for Southern Ghana. 

Panel 1 shows inputs side by side with their population counts. Panel 1A is identical to the inputs to 

GPW, Panel 1B shows the additional urban areas used in GRUMP. In Panel 2, the inputs are merged, 

first illustrated as an overlay of the urban footprints over the administrative polygons in Panel 2A, and 

the final grid, in Panel 2B (with administrative and urban) boundaries overlaid. 
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Figure 4. The computation of accessibility potential for a single node on the transport network where 

four towns are within the chosen travel time threshold. 

 

 
 
 
Figure 5 Cumulative percent of the African population represented by MSR (i.e., for Version 4, 60% of 

the population is represented by an MSR of 50 or better). 

 

 
 
 
 
 
 



Figure 6 Spatial Lorenz curve for the population distribution vis-à-vis the land area of Ecuador, 2000 

(with insert indicating the non-cumulative distribution of population density). 

 

 
 



Figure 7 Graph of error structure by administrative level for the five large area public-domain human 

population distribution surfaces (see text and Hay et al. 2005). Left axis is the root mean square error 

expressed as a percentage of the mean population size of the administrative level. 
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