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1 SUMMARY OF FINDINGS

This note explore techniques for estimating econometric models of city population growth rates

and developing forecasts of these rates. To illustrate, we make use of the most recent available

version of the United Nations Population Division’s cities database, and link its city growth series

to estimates and projections of total fertility rates and child mortality rates. Limiting attention to

cities in developing countries, we proceed to estimate a variety of random-effect and fixed-effect

models of city growth and develop growth forecasts.

The empirical results we obtain prove to be strongly supportive of this approach. This is espe-

cially true of the fixed-effect city growth models, which introduce a great number of city-specific

dummy variables and yet display large and statistically significant total fertility rate and city size

coefficients. The city growth rate forecasts generated by these econometric models are demograph-

ically reasonable, suggesting that over the span of the forecast from 2000 to 2045, median city

growth rates in the developing world will fall from about 2.5 percent to 1.6 percent (see Figure 9).

Our city growth forecasts are consistent with, and indeed largely based upon, the United Nations

forecasts for fertility and mortality rate decline at the national level. Yet the United Nations has

never previously linked its fertility and mortality projections to its city growth rate projections. It

has developed the city projections autonomously, using methods that the UN acknowledges are

simplistic and in need of revision. Our approach thus unites two of the large programs of population

projection in which the UN engages, and does so in a way that permits the city growth forecasts to be

expressed in probabilistic terms, as strongly recommended by the U.S. National Research Council’s

extensive review of population projection methods (Panel on Population Projections, 2000).

To be sure, these are preliminary results. Much remains to be done to assess the nature and

extent of measurement error in the basic city population data series. Until the city data have been

thoroughly cleaned and validated, no one can make definitive pronouncements about which fore-

casting methods yield the best results. In addition, further work is in order on the explanatory

variables that enter these models. The results developed in this note are based not on the preferred

urban estimates of the total fertility and child mortality rates, but rather on national estimates of

fertility and mortality. We intend to revisit questions of the robustness of the city growth estimates

and their vulnerability to measurement error when the cities database has been cleaned, probable

errors of measurement have been uncovered and flagged, and the full complement of urban fertility
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and mortality data have been made ready to be linked to the city growth series. At that point the

rigorous comparison of forecast results from alternative methods can begin.

2 OVERVIEW OF METHODS

The basic city growth model is set out as equation (1),

gi,t = α +βTFRt +δqt + vi,t . (1)

In this equation the i subscript denotes a particular city and t is a point in time; gi,t is the estimated

city population growth rate at that time; and the fertility and mortality components of growth are

represented by the total fertility rate TFRt and qt , the child mortality rate.

At first glance, equation (1) might not appear to provide a useful starting-point for city growth

rate estimation and projection—after all, no observable city-specific explanatory variables appear

on its right-hand side. How, then, could such an equation possibly supply city-specific growth

estimates? To understand our approach, recall that the United Nations city database provides a short

time-series of growth observations for the cities in the database. When the disturbance term vi,t of

equation (1) is appropriately specified, and econometric techniques for time-series, cross-sectional

data are applied, informative city-specific growth estimates can be extracted from the equation even

in the absence of city-specific explanatory variables.

Of course, growth models including observed city-specific explanatory variables will generally

be preferred to those without such variables, provided that the city-specific observables are either

fixed over time or can be forecast with reasonable confidence. To show how our approach gener-

alizes to include observed city-specific explanatory variables, we will develop below an expanded

model of city growth in which city i’s population size exerts an influence on its growth rate. As

we will demonstrate, the inclusion of city size in the econometric models brings our growth rate

forecasts closer into line with the UN’s current forecasts.

In what follows, we explore three specifications of vi,t , the regression disturbance term. The

first is a random effects specification in which the disturbance term is represented as a compos-

ite vi,t = ui + εi,t , containing one component, ui, that is specific to city i and whose value can be

estimated as ûi. In this approach, ui is assumed to be uncorrelated with the other right-hand side

explanatory variables (TFRt and qt). Our second specification is a fixed effect specification in which

the disturbance term also takes the composite form vi,t = ui + εi,t , but in which ui is allowed to

be correlated with other right-hand side variables. As in the random-effects approach, the value

of ui can be estimated (using techniques similar though not necessarily identical to those applied

in the random-effects method). This specification will prove useful when city-specific endogenous

explanatory variables are introduced in the model.

Our third specification is a random-effects first-order autoregressive specification in which the

disturbance term again takes the composite form vi,t = ui + εi,t , but with εi,t = ρεi,t−1 + wi,t . In

this approach, the city-specific growth forecast for a future period t + s, given data up to period t,

involves ûi + ρ̂s · ε̂i,t . In the simple random-effects and fixed-effects models, city i’s growth rate

is forecast to be relatively high (ûi > 0) or low (ûi < 0) indefinitely, whereas the autoregressive

approach allows a portion of the projected city-specific growth difference to fade away with time.

The model with lagged city population size as a covariate is specified as in equation (2),

gi,t = α0 +α1Pi,t−1 +βTFRt +δqt + vi,t . (2)
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with Pi,t−1 being the lagged value of city i’s population.1 A random-effects specification is not

appropriate here, because Pi,t−1 is akin to a lagged dependent variable and is therefore correlated

with the ui component of the disturbance term. Variants of the fixed-effect estimation strategy are

required in this case.

Please note that whereas we hope to employ urban total fertility rates and child mortality rates in

our future analyses of city growth, in this illustrative note we make use of national total fertility and

child mortality rates. Urban fertility and child mortality rates are available from the World Fertility

Surveys, the Demographic Health Surveys, and numerous other sources. We are in the process of

assembling these urban rates, critically reviewing them, and linking them to the city population

database. For the purposes of this illustrative note, we will rely on the national-level fertility and

child mortality estimates and forecasts already available from the Population Division.

3 OVERVIEW OF THE UN CITIES DATABASE

The current version of the UN Population Division cities database supplies population counts for

over 2500 cities in the developing world. The database includes records of each city’s population

size as reported in a census or another official estimate, together with the year of the report. In

general, a city appears in this database if it is a capital or if its population has exceeded 100,000

residents.2 In Africa, there are on average 3.5 records available on the population of each city in the

database; in Asia, there are 3.2 such records; and in Latin America and the Caribbean, 5.7 records.

These records refer to population counts taken as long ago as the 1940s, in a few instances, and

as recently as 2003–04. City populations are not necessarily recorded at regular intervals even in

one country, and the intervals between measurements vary a good deal across countries. As we

will discuss below, the uneven spacing in the time dimension that is a feature of these data makes it

difficult to apply conventional time-series estimation techniques.

For each city, we have converted the available population data into measures of city growth

rates gi,t0 , with growth over the period t0 to t1 defined in continuous terms and estimated as gi,t0 =
(lnPi,t1 − lnPi,t0)/(t1−t0). The conversion from population counts to growth rates yields some 8,000

observations on city growth.

Figure 1 depicts the distribution of city growth rates for all cities (and time periods) in the

database, and separately for the broad developing regions of Africa, Asia, and Latin America. The

median growth rate recorded here is 3.20 percent and the mean is 3.76 percent. As the figure shows,

there are instances of city population decline evident in these data as well as cases of rapid growth

at rates of 10 percent and above.

In formulating its urban projections, the UN Population Division has made use of an equation

that forces city growth rates to decline as city size increases. The empirical basis for this relation-

ship can be seen in Figure 2, represented via box plots. (These plots indicate the 25th percentile,

the median, and the 75th percentile; the ‘whiskers’ show lower and higher percentiles. To aid in

inspection of the central tendencies and to reduce visual clutter, the plots omit a handful of lower

and upper growth outliers; these were displayed in Figure 1 above.) As the UN has emphasized

1The notation conveys the essential features of the model we use, but over-simplifies the situation that faces us.

Annual city population data are not generally available in the UN cities database, and city population counts are recorded

at unequally-spaced intervals.
2Once a city passes this size threshold, the Population Division endeavors to reconstruct its population trajectory

in earlier years. Hence, the database contains many records of cities with populations under 100,000. However, these

records have not generally been subjected to the critical scrutiny that the Population Division applies to larger cities.

3



Figure 1 Distribution of city population growth rates, all developing countries and by region.
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(b) African cities.
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in its discussion of the method, the relationship between city size and growth is weak in terms of

variance explained but is, nevertheless, highly significant in statistical terms and sufficiently general

to warrant consideration in the forecasts. In Africa, as the figure shows, the relationship between

city size and growth is a bit irregular, being mainly apparent in the growth rate difference between

the smallest and largest cities of the region. In other regions, however, the relationship appears to be

more robust. As Figure 3 indicates, the negative association between size and the rate of growth is

evident among the smaller cities (under half a million population) as well as the larger. The growth

rate differences depicted in these figures amount to a few percentage points above and below the

median growth rate, and clearly there is substantial residual variation that cannot be attributed to

city size as such—but there is sufficient regularity in evidence here to justify further examination.3

Substantial differentials emerge when we consider how city growth rates vary with national total

fertility rates (TFRs). As we have noted, this linkage—shown in Figure 4 for all cities and in Figure

5 for cities under half a million in size—has not previously been featured in the UN city projection

methods. To judge from our descriptive figures, there is ample reason to incorporate fertility rates

in city growth forecasts. Note in particular that in Latin America, the TFR–city growth gradient is

especially steep. In this region, which is the most highly urbanized in the developing world, national

TFRs are probably better proxies for urban TFRs than is the case in the other regions. We would

expect that when we are able to link urban fertility data to the cities database, steeper TFR–city

growth gradients will emerge in Africa and Asia as well.

The city growth–child mortality gradient (not shown) is generally positive, owing (we believe)

to the positive association between the total fertility rate and the child mortality rate. As will be seen

in the next section, evidence of the expected negative association between city growth and mortality

emerges when statistical controls are put in place for the level of the total fertility rate.

3Although we do not pursue the point further in this note, there is a suggestion of heteroskedasticity in the plots of

growth rates by city size, with greater variance possibly evident for smaller cities.
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Figure 2 City population growth rates by city size, all developing countries and by region.
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(a) All cities.
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(c) Asian cities.
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Figure 3 City population growth rates by city size for cities under 500,000 population, all developing countries and by region.
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(a) All small cities.
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(b) Small African cities.
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Figure 4 City population growth rates by national total fertility rate, all developing countries and by region.
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(b) African cities.
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(c) Asian cities.
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Figure 5 City population growth rates for cities under 500,000 population, by national total fertility rate, all developing countries and by

region.
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(a) All small cities.
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(b) Small African cities.
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Table 1 City growth regression models, developing countries, all cities.

(Asymptotic Z-statistics in parentheses.)

Model 2

Model 1 OLS Random Effects Fixed Effects

Total Fertility Rate 0.466 0.602 0.685 0.887

(Z statistic) (26.83) (19.97) (20.34) (17.68)

Child Mortality Rate -0.004 -0.005 -0.007

(-5.53) (-5.54) (-4.49)

Constant 1.878 1.757 1.464 0.802

(24.43) (22.01) (16.54) (7.25)

σu 1.184 1.907

(27.71)

σε 2.667 2.662 2.394 2.381

(107.08)

log-likelihooda -18640 -18624 -18446 -16568

a Likelihood calculation assumes that disturbances are normally distributed.

4 ESTIMATING CITY GROWTH RATE EQUATIONS

In what follows we present illustrative estimates of the basic city growth rate models, using the

random-effects and fixed-effects specifications described above. In each case, the disturbance term

vi,t of the regression takes the composite form vi,t = ui + εi,t . In the random-effects specification,

the city-specific component ui is assumed to be uncorrelated with the right-hand side explanatory

variables, whereas in the fixed-effect specification a correlation between ui and the explanatory

variables is permitted. We also present estimates of the random effects, first-order autoregressive

model in which vi,t = ui + εi,t with εi,t = ρεi,t−1 +wi,t .

Given data to period t, forecasts of city growth rates in period t + s are made as follows. For the

purposes of this note, we will take the United Nations point forecasts of national total fertility rates

and child mortality rates as given. (This assumption can be relaxed to allow for forecast errors in

future fertility and mortality.) Then for city growth in period t + s, we have

g̃i,t+s = α̂ + β̂T FRt+s + δ̂qt+s + ṽi,t+s,

in which the symbol ‘˜’ denotes a forecast value and the symbol ‘ˆ’ denotes an estimated quantity

based on data up to period t. In the simple random-effects and fixed-effects models, ṽi,t+s = ûi al-

though the way in which ûi is calculated generally differs between the two methods. In the random-

effects autoregressive case, ṽi,t+s = ûi + ρ̂s · ε̂i,t . The models we describe below were estimated

in STATA, which offers the Baltagi–Wu (1999) routine to estimate random-effects autoregressive

models when the data are unequally spaced in the time dimension.

Table 1 presents the basic regression models, with ordinary least squares estimates shown in the

first two columns, followed by the simple random-effects and fixed-effects models. As can be seen,

the coefficient on the total fertility rate is highly significant, with an increase of 1 child in the TFR

implying increases in city growth rates ranging from 0.466 to 0.887 percentage points, depending

on the model. Interestingly, the fixed-effects estimate of the TFR coefficient is the largest in this set

of estimates. The child mortality rate (the variable is coded in terms of deaths per 1000 children)

has a smaller effect on city growth, but the coefficient attains statistical significance.
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Table 2 Random and fixed-effect city growth models, by region. (Asymptotic Z-

statistics in parentheses.)

Africa Asia Latin America

RE FE RE FE RE FE

Total Fertility Rate 0.375 0.297 0.646 1.082 0.675 0.944

(Z statistic) (3.89) (2.40) (14.12) (13.63) (9.10) (10.17)

Child Mortality Rate 0.004 0.011 -0.008 -0.014 0.003 -0.006

(1.94) (3.37) (-6.57) (-6.99) (1.29) (-1.87)

Constant 1.519 0.829 1.797 0.773 1.185 0.845

(4.17) (1.66) (15.47) (4.55) (7.89) (5.50)

σu 0.963 2.028 1.060 1.948 1.237 1.694

(6.93) (16.71) (18.73)

σε 2.753 2.756 2.510 2.494 1.963 1.947

(40.88) (77.88) (60.64)

log-likelihooda -2944 -2652 -10111 -9099 -5129 -4605

a Likelihood calculated on the assumption that disturbances are normally dis-

tributed.

Table 3 Random-effects city growth models with autoregressive distur-

bances. (Asymptotic Z-statistics in parentheses.)

Assumed value of ρ

ρ = 0.5 ρ = 0.6 ρ = 0.7 ρ = 0.8 ρ = 0.9

Total Fertility Rate 0.682 0.680 0.674 0.661 0.670

(Z statistic) (20.31) (20.10) (19.63) (18.64) (16.30)

Child Mortality Rate -0.005 -0.005 -0.005 -0.005 -0.005

(-5.60) (-5.58) (-5.53) (-5.38) (-4.82)

Constant 1.488 1.500 1.523 1.572 1.536

(16.93) (16.84) (16.66) (16.31) (13.39)

σu 1.138 1.112 1.044 0.794 0.000

σε 2.087 1.942 1.767 1.569 1.375

Table 2 presents region-specific estimates of the random-effects and fixed-effects models. The

major differences between these estimates and the estimates based on pooled data are, first, that the

child mortality coefficient changes sign in one region (Africa) and loses statistical significance in

another (Latin America). Second, the coefficient on the total fertility rate is evidently smaller in

Africa than in the other two regions. However, the TFR coefficient is highly significant in all three

regions.

Table 3 presents estimates of the random-effects autoregressive model. Here we fix the value of

ρ , the autoregressive coefficient of the disturbance term, and show how the other model coefficients

are influenced by its value.4 In this case, the value chosen for ρ has little apparent effect on the

4With unequally-spaced data, it is difficult to obtain credible estimates of ρ without recourse to special-purpose

programming. The routine we have used in STATA calculates an estimate of ρ using the observations that happen to be

one period (that is, one year) apart—such pairs of observations are rather rare in the cities database. Estimates of ρ for
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other parameter estimates, leaving virtually unchanged the estimates of the TFR and child mortal-

ity coefficients, and exerting only minor influence on the estimated constant term. Nevertheless,

although the estimates are similar, forecasts based on the random-effects, first-order autoregres-

sive model would behave differently from forecasts of the simple random-effects and fixed-effects

models. With |ρ| < 1, the forecast of the composite ṽi,t+s disturbance given data to period t is

ṽi,t+s = ûi +ρs · ε̂i,t

in which the estimated ε̂i,t disturbance component for period t exerts a persistent but gradually

waning influence on forecasts of city growth for future periods. The higher the value of ρ , the larger

this effect will be in any given future period. As s increases, however, the autoregressive effect

steadily diminishes in size, leaving ûi in place as the principal city-specific effect on future growth.

In Figures 6 and 7 we compare the United Nations city growth forecasts (with an endpoint of

2015) with the forecasts derived from the simple random-effects and fixed-effects models of Table

1, which extend to 2045 in keeping with the UN’s forecasts of total fertility and child mortality rates.

The UN forecasts suggest a modest decline of half a percentage point in median city growth rates

from 2000 to 2015. This is about the same as the median projected growth rate decline suggested

by the regression models, although the regression estimates suggest more rapid growth overall.

The difference in the level of growth rates between the UN forecasts and ours merits discussion.

The key to understanding the difference is this: The UN forecasts build in a negative relationship

between city size and city growth rates, whereas in the regression models of Table 1, the forecasted

decline in city growth is wholly attributable to declines in future fertility and mortality. (The mortal-

ity effect by itself would imply rising rates of city growth as child death rates fall, but in our models

these mortality effects are overwhelmed by the effects of falling fertility.) In the next section, we

will show that the addition of a city size variable to our econometric models draws our growth rate

forecasts closer into line with those of the UN.

5 MODELS AND FORECASTS WITH LAGGED CITY POPULATION SIZE

Having shown what can be achieved in a stripped-down growth model containing no city-

specific explanatory variables, we now introduce such a variable—city population size, lagged—

into the city growth rate specification and explore the implications of this expanded model. Recall

that the model with city size as a covariate is specified as

gi,t = α0 +α1Pi,t−1 +βTFRt +δqt + vi,t .

with Pi,t−1 being the lagged value of city i’s population. We again write the disturbance term as

vi,t = ui + εi,t , but note that a random-effects specification is not appropriate in this case. The

reason is that Pi,t−1 is in part the product of the growth rates for city i that were in force in earlier

years, and because of this Pi,t−1 can be likened to a lagged dependent variable that is correlated

with the ui component of the disturbance. A large and growing literature in econometrics explores

the estimation techniques appropriate to this situation, which include variants of the fixed-effect

estimation strategy and the use of instrumental variables (e.g., Arellano and Bond, 1991).

To indicate the role of city size in determining the growth rate, Table 4 presents estimates of an

ordinary least squares model and a fixed-effects model with lagged city size included as a covariate

our dataset will require additional programming routines to be coded in Fortran or Matlab. Also, the last column of the

table shows that highly persistent autoregressive disturbances (produced by high values of ρ) are difficult to distinguish

from fully persistent ui values.
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Figure 6 United Nations city growth rate forecasts to 2015. Median growth rates shown.
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Figure 7 City growth rate forecasts from the random-effects and fixed-effects regressions, to 2045.
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Table 4 Growth Regression Models with Lagged

City Size, All Cities. (Asymptotic Z-statistics in

parentheses)

OLS Fixed Effect

Total Fertility Rate 0.578 0.839

(Z statistic) (19.05) (16.62)

Child Mortality Rate -0.004 -0.007

(-5.35) (-5.02)

Lagged City Sizea -0.000200 -0.000477

(-6.24) (-6.76)

Constant 1.917 1.256

(22.92) (9.73)

σu 1.906

σε 2.656 2.371

log-likelihood -18605 -16537

a Measured in thousands of residents.

along with the total fertility rate and the child mortality rate. These results reconfirm what was seen

before, that the TFR has a strong association with city growth and the child mortality rate a weaker

but (in this pooled regression) statistically significant influence. Lagged city size (measured here in

terms of thousands of residents) also achieves statistical significance in these regressions.

With lagged city size in the model, forecasts of city growth must be made recursively. The

growth rate forecast g̃i,t for period t to t +1 implies a forecast for city i’s population size as of time

t +1, or P̃i,t+1, which then goes on to influence the growth rate g̃i,t+1 forecast for the period t +1 to

t + 2. Using the fixed-effects estimates from Table 4, together with the estimated effect ûi for each

city, we have generated such recursive forecasts for the cities in our database.

The results are shown in Figure 9, with the UN forecasts re-displayed in Figure 8 to facilitate

comparison. (Note again that the UN forecasts are made to 2015, whereas our growth forecasts

extend to 2045.) These forecasts are much closer to the UN’s forecasts in the level of the projected

growth rate, and owing to the inclusion of a negative city size feedback effect, they decline more

steeply with the passage of time than did our earlier forecasts, which were made without consider-

ation of city size. Region-specific summaries of our forecasts (not shown) suggest decreases in the

median city growth rate of about 2 percentage points in Africa over the full span of the projection,

and declines on the order of 0.5 percentage points for the other regions.

In short, we have demonstrated that it is a simple matter to reconcile the main features of our

city growth forecasts with those of the United Nations, by introducing lagged city size into the

specifications. To be sure, it is not at all obvious that reconciliation of these forecasts should be our

aim. Too much doubt has been cast on the validity of the UN forecasts to adopt them, uncritically,

as the standard of comparison.

6 NEXT STEPS

The analyses and forecasts presented here are meant to clarify and illustrate some of the main

methods described in the research proposal. Using national rather than the preferred urban data on

total fertility rates and child mortality, we have uncovered strong evidence supporting the use of
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Figure 8 United Nations city growth rate forecasts to 2015. Median growth rates shown.
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Figure 9 City growth rate forecasts from the fixed-effects regressions including lagged city size as

a covariate, to 2045. Median growth rates shown.
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total fertility rates in econometric models of city growth and the forecasts based on these models.

The findings on child mortality are less robust, but they also invite further analysis. As we have

seen, statistical models incorporating lagged city size—which has been a key feature of the UN city

projection methods—clearly merit consideration in our future work.

The result of the fixed-effect models are especially striking, given that such models include

a great number of city-specific dummy variables (whose effects are expressed in the ûi) and yet

exhibit large and statistically significant TFR coefficients. But the results are, of course, highly

preliminary. As already mentioned, the results shown here are based not on the preferred urban

estimates of the total fertility rate and child mortality, but rather on national estimates of fertility

and mortality. Much remains to be done to assess the nature and extent of measurement error in

the city population series. More attention needs to be paid to regional and country differences in

the coefficients. We intend to revisit questions of the robustness of the estimates, their vulnerability

to measurement error, and possible region-specific variation in coefficient values when the cities

database has been cleaned and vetted, probable errors of measurement have been identified, and a

full set of urban fertility, mortality, and related data are ready to be linked to the city growth series.

As we have discussed elsewhere, Bayesian estimation and forecasting methods offer a means

of incorporating measurement error via the specification of prior distributions. These methods hold

great promise, but they too will require substantial preparatory work and additional programming.

Additional work will be required to identify with confidence the spatial coordinates of the cities

in the database, which are necessary inputs in the models of spatial correlation across cities. And

as Voss et al. (2005) argue, when there is reason to suspect that spatial error correlation exists,

models that do not take it into account will likely be biased in terms of coefficient standard errors,

thus contaminating inference and causing forecast error variances to be calculated incorrectly. Even

with these limits on our present efforts acknowledged, we believe that the results obtained so far

lend a good deal of support to our general approach.
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